UZH-Logo

Maintenance Infos

Isotopically modified Ge detectors for Gerda: from production to operation


Budjas, D; Agostini, M; Baudis, L; Bellotti, E; Bezrukov, L; Brugnera, R; Cattadori, C; di Vacri, A; Falkenstein, R; Garfagnini, A; Georgi, S; Grabmayr, P; Hegai, A; Hemmer, S; Hult, M; Janicsko Csathy, J; Kornoukhov, V; Lehnert, B; Lubashevskiy, A; Nisi, S; Pivato, G; Schönert, S; Tarka, M; von Sturm, K (2013). Isotopically modified Ge detectors for Gerda: from production to operation. Journal of Instrumentation, 04:P04018.

Abstract

The GERDA experiment searches for the neutrinoless double beta (0νββ) decay of 76Ge using high-purity germanium detectors made of material enriched in 76Ge. For Phase II of the experiment a sensitivity for the half life T1/20ν ~ 2centerdot1026 yr is envisioned. Modified Broad Energy Germanium detectors (BEGe) with thick n+ electrodes provide the capability to efficiently identify and reject background events, while keeping a large acceptance for the 0νββ-decay signal through novel pulse-shape discrimination (PSD) techniques. The viability of producing thick-window BEGe-type detectors for the GERDA experiment is demonstrated by testing all the production steps from the procurement of isotopically modified germanium up to working BEGe detectors. Comprehensive testing of the spectroscopic as well as PSD performance of the GERDA Phase II prototype BEGe detectors proved that the properties of these detectors are identical to those produced previously from natural germanium material following the standard production line of the manufacturer. Furthermore, the production of BEGe detectors from a limited amount of isotopically modified germanium served to optimize the production, in order to maximize the overall detector mass yield. The results of this test campaign provided direct input for the subsequent production of the enriched germanium detectors.

The GERDA experiment searches for the neutrinoless double beta (0νββ) decay of 76Ge using high-purity germanium detectors made of material enriched in 76Ge. For Phase II of the experiment a sensitivity for the half life T1/20ν ~ 2centerdot1026 yr is envisioned. Modified Broad Energy Germanium detectors (BEGe) with thick n+ electrodes provide the capability to efficiently identify and reject background events, while keeping a large acceptance for the 0νββ-decay signal through novel pulse-shape discrimination (PSD) techniques. The viability of producing thick-window BEGe-type detectors for the GERDA experiment is demonstrated by testing all the production steps from the procurement of isotopically modified germanium up to working BEGe detectors. Comprehensive testing of the spectroscopic as well as PSD performance of the GERDA Phase II prototype BEGe detectors proved that the properties of these detectors are identical to those produced previously from natural germanium material following the standard production line of the manufacturer. Furthermore, the production of BEGe detectors from a limited amount of isotopically modified germanium served to optimize the production, in order to maximize the overall detector mass yield. The results of this test campaign provided direct input for the subsequent production of the enriched germanium detectors.

Citations

4 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Feb 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2013
Deposited On:05 Feb 2014 12:44
Last Modified:05 Apr 2016 17:28
Publisher:IOP Publishing
ISSN:1748-0221
Publisher DOI:https://doi.org/10.1088/1748-0221/8/04/P04018
Permanent URL: https://doi.org/10.5167/uzh-89700

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 797kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations