UZH-Logo

Maintenance Infos

The role of Active Galactic Nuclei feedback in the formation of the brightest cluster galaxies


Martizzi, Davide; Teyssier, Romain; Moore, Ben (2012). The role of Active Galactic Nuclei feedback in the formation of the brightest cluster galaxies. Proceedings of the International Astronomical Union, 8(S295):362-365.

Abstract

The formation of the brightest cluster galaxies (BCG) is a challenge for galaxy formation theory. We performed high resolution cosmological hydrodynamical simulations with the AMR code RAMSES to study the properties of the BCG which forms at the center of a Virgo-like cluster. We compare the results of 2 galaxy formation scenarios, one in which only supernovae feedback is included, and one in which also AGN feedback is considered. Properties of the simulated BCG which are comparable with those of observed massive elliptical galaxies and BCGs cannot be obtained if AGN feedback is not considered. The stellar-to-halo mass ratio in simulations without AGN feedback appears too large when compared to observations, while it is compatible the observationally determined values when AGN feedback is included. The kinematical and structural properties of the BCG are extremely different in the two models. When we do not include AGN feedback, the BCG is quickly rotating, with high Sérsic index, a clear mass excess in the center and a very large stellar mass fraction. When AGN feedback is considered, the BCG is slowly rotating, with a significantly cored surface density profile and low stellar mass fraction.

The formation of the brightest cluster galaxies (BCG) is a challenge for galaxy formation theory. We performed high resolution cosmological hydrodynamical simulations with the AMR code RAMSES to study the properties of the BCG which forms at the center of a Virgo-like cluster. We compare the results of 2 galaxy formation scenarios, one in which only supernovae feedback is included, and one in which also AGN feedback is considered. Properties of the simulated BCG which are comparable with those of observed massive elliptical galaxies and BCGs cannot be obtained if AGN feedback is not considered. The stellar-to-halo mass ratio in simulations without AGN feedback appears too large when compared to observations, while it is compatible the observationally determined values when AGN feedback is included. The kinematical and structural properties of the BCG are extremely different in the two models. When we do not include AGN feedback, the BCG is quickly rotating, with high Sérsic index, a clear mass excess in the center and a very large stellar mass fraction. When AGN feedback is considered, the BCG is slowly rotating, with a significantly cored surface density profile and low stellar mass fraction.

Altmetrics

Downloads

12 downloads since deposited on 27 Feb 2014
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:July 2012
Deposited On:27 Feb 2014 10:49
Last Modified:05 Apr 2016 17:29
Publisher:Cambridge University Press
ISSN:1743-9213
Additional Information:Copyright: Cambridge University Press
Publisher DOI:https://doi.org/10.1017/S1743921313005371
Permanent URL: https://doi.org/10.5167/uzh-89910

Download

[img]
Preview
Filetype: PDF
Size: 201kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations