UZH-Logo

Creating unbiased cross-sectional covariate-related reference ranges from serial correlated measurements


Wade, A; Kurmanavicius, J (2009). Creating unbiased cross-sectional covariate-related reference ranges from serial correlated measurements. Biostatistics, 10(1):147-154.

Abstract

Cross-sectional covariate-related reference ranges are widely used in clinical medicine to put individual observations in the context of population values. Usually, such reference ranges are created from data sets of independent observations. If multiple measurements per individual are available, then ignoring the within-person correlation between repeats will lead to overestimation of centile precision. Furthermore, if abnormal measurements have triggered more frequent assessment, the data set will be biased thus producing biased centiles. Where multiple measures per individual exist, the methods commonly used are either randomly or systematically to select one observation per individual or to model individual trajectories and combine these. The first of these approaches may result in discarding a large proportion of the available data and may itself cause bias and the latter requires the form of the changes within individuals to be characterized. We have developed an approach to the modeling of the median, spread, and skew across individuals using maximum likelihood, which can incorporate correlations between dependent observations. Heavily biased data sets are simulated to illustrate how the methodology can eliminate the biases inherent in the data collection process and produce valid centiles plus estimates of the within-person correlations. The "select one per individual" approach is shown to be liable to bias and to produce less precise centiles. We recommend that the maximum likelihood method incorporating correlations be used with existing data sets. Furthermore, this is a potentially more efficient approach to be considered when planning the future collection of data solely for the purposes of creating cross-sectional covariate-related reference ranges.

Cross-sectional covariate-related reference ranges are widely used in clinical medicine to put individual observations in the context of population values. Usually, such reference ranges are created from data sets of independent observations. If multiple measurements per individual are available, then ignoring the within-person correlation between repeats will lead to overestimation of centile precision. Furthermore, if abnormal measurements have triggered more frequent assessment, the data set will be biased thus producing biased centiles. Where multiple measures per individual exist, the methods commonly used are either randomly or systematically to select one observation per individual or to model individual trajectories and combine these. The first of these approaches may result in discarding a large proportion of the available data and may itself cause bias and the latter requires the form of the changes within individuals to be characterized. We have developed an approach to the modeling of the median, spread, and skew across individuals using maximum likelihood, which can incorporate correlations between dependent observations. Heavily biased data sets are simulated to illustrate how the methodology can eliminate the biases inherent in the data collection process and produce valid centiles plus estimates of the within-person correlations. The "select one per individual" approach is shown to be liable to bias and to produce less precise centiles. We recommend that the maximum likelihood method incorporating correlations be used with existing data sets. Furthermore, this is a potentially more efficient approach to be considered when planning the future collection of data solely for the purposes of creating cross-sectional covariate-related reference ranges.

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 06 Apr 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Obstetrics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 January 2009
Deposited On:06 Apr 2009 12:52
Last Modified:05 Apr 2016 12:45
Publisher:Oxford University Press
ISSN:1465-4644
Publisher DOI:10.1093/biostatistics/kxn022
PubMed ID:18599515
Permanent URL: http://doi.org/10.5167/uzh-9007

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations