UZH-Logo

Maintenance Infos

Veno-venous perfusion to cool and rewarm in thoracic and thoracoabdominal aortic aneurysm repair


Schmidt, Christian A P; Wilhelm, Markus J; Mayer, Dieter O; Rancic, Zoran; Bangemann, Annette; Felix, Christian; Veith, Frank J; Lachat, Mario L (2013). Veno-venous perfusion to cool and rewarm in thoracic and thoracoabdominal aortic aneurysm repair. Journal of Vascular Surgery, 58(1):33-41.

Abstract

BACKGROUND: Femoro-femoral veno-arterial perfusion is an established circulatory support and cooling method for thoracic- and/or thoracoabdominal aortic aneurysm repair. However, retrograde perfusion through femoral arteries can lead to retrograde cerebral embolization and neurologic dysfunction after surgery. To avoid these complications, we have established a femoro-femoral veno-venous perfusion technique and evaluated its safety and effectiveness in elective and nonelective patients.
METHODS: Common femoral veins were cannulated bilaterally percutaneously following systemic low-dose heparinization (100 IU/kg body weight). Venous blood was drained from drainage of the inferior vena cava, and venous return followed through the superior vena cava. After proximal aortic cross-clamping, veno-venous perfusion was switched to veno-arterial antegrade perfusion through the distal descending thoracic aorta to achieve spinal and visceral perfusion or through iliac arteries for distal perfusion combined with selective renovisceral blood perfusion. After completion of aortic repair, the arterial cannula was removed and the patient rewarmed just by switching back to veno-venous perfusion. Gas and temperature exchange as well as relevant hemodynamic parameters were recorded prospectively and analyzed retrospectively in 25 consecutive patients including 15 nonelective cases.
RESULTS: Percutaneous insertion of outflow (28F cannula) and inflow (18F cannula) venous cannulae was complication-free and allowed unrestricted perfusion in all 25 patients. Veno-venous perfusion allowed effective cooling (mean body temperature 36.6 ± 0.6°C to 31.6 ± 2.1°C, P = .001 compared with start of cooling) and re-warming (mean body temperature 30.5 ± 3°C to 36.3 ± 0.8°C, P = .03 compared with start of re-warming). Hemodynamic as well as pulmonary parameters remained remarkably stable during surgical dissection and single lung ventilation even in nonelective cases. There was no complication associated with the perfusion technique during surgery.
CONCLUSIONS: Transfemoral veno-venous cooling and re-warming results in remarkable hemodynamic stability during open repair of thoracic- and/or thoracoabdominal aortic aneurysms and eliminates the need for retrograde arterial perfusion and its inherent risks.

Abstract

BACKGROUND: Femoro-femoral veno-arterial perfusion is an established circulatory support and cooling method for thoracic- and/or thoracoabdominal aortic aneurysm repair. However, retrograde perfusion through femoral arteries can lead to retrograde cerebral embolization and neurologic dysfunction after surgery. To avoid these complications, we have established a femoro-femoral veno-venous perfusion technique and evaluated its safety and effectiveness in elective and nonelective patients.
METHODS: Common femoral veins were cannulated bilaterally percutaneously following systemic low-dose heparinization (100 IU/kg body weight). Venous blood was drained from drainage of the inferior vena cava, and venous return followed through the superior vena cava. After proximal aortic cross-clamping, veno-venous perfusion was switched to veno-arterial antegrade perfusion through the distal descending thoracic aorta to achieve spinal and visceral perfusion or through iliac arteries for distal perfusion combined with selective renovisceral blood perfusion. After completion of aortic repair, the arterial cannula was removed and the patient rewarmed just by switching back to veno-venous perfusion. Gas and temperature exchange as well as relevant hemodynamic parameters were recorded prospectively and analyzed retrospectively in 25 consecutive patients including 15 nonelective cases.
RESULTS: Percutaneous insertion of outflow (28F cannula) and inflow (18F cannula) venous cannulae was complication-free and allowed unrestricted perfusion in all 25 patients. Veno-venous perfusion allowed effective cooling (mean body temperature 36.6 ± 0.6°C to 31.6 ± 2.1°C, P = .001 compared with start of cooling) and re-warming (mean body temperature 30.5 ± 3°C to 36.3 ± 0.8°C, P = .03 compared with start of re-warming). Hemodynamic as well as pulmonary parameters remained remarkably stable during surgical dissection and single lung ventilation even in nonelective cases. There was no complication associated with the perfusion technique during surgery.
CONCLUSIONS: Transfemoral veno-venous cooling and re-warming results in remarkable hemodynamic stability during open repair of thoracic- and/or thoracoabdominal aortic aneurysms and eliminates the need for retrograde arterial perfusion and its inherent risks.

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiovascular Surgery
Dewey Decimal Classification:610 Medicine & health
Language:German
Date:2013
Deposited On:04 Feb 2014 08:14
Last Modified:05 Apr 2016 17:30
Publisher:Elsevier
ISSN:0741-5214
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.jvs.2013.01.030
PubMed ID:23642925

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations