UZH-Logo

Maintenance Infos

Stepwise construction of an iron-substituted rigid-rod molecular wire: targeting a tetraferra-tetracosa-decayne


Lissel, F; Fox, T; Blacque, O; Polit, W; Winter, R F; Venkatesan, K; Berke, H (2013). Stepwise construction of an iron-substituted rigid-rod molecular wire: targeting a tetraferra-tetracosa-decayne. Journal of the American Chemical Society, 135(10):4051-4060.

Abstract

trans-Fe(depe)2I2 (depe =1,2-bis(diethylphosphino)ethane) was employed to stepwise incorporate Fe(II) centers into a rigid-rod butadiyne based 5,10,15,20-tetraferratetracosa-1,3,6,8,11,13,16,18,21,23-decayne. The iterative synthesis first connects two Fe(II) centers via a central butadiynediyl ligand to provide I-Fe(depe)2-C4-Fe(depe)2-I (2), then extends the system by substituting the terminal halides of 2 to yield Me3SiC4-Fe(depe)2-C4-Fe(depe)2-C4SiMe3 (3). Further modification of the termini gives the deprotected and stannylated compounds RC4-Fe(depe)2-C4-Fe(depe)2-C4R (4 and 5; R = H, Sn(CH3)3, respectively). Transmetalation with two more mononuclear units furnishes the homometallic tetranuclear compound I-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-I (6), to which two more butadiynyl units were attached to give Me3SiC4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4SiMe3 (7). All compounds were characterized by NMR, IR, and Raman spectroscopies and by elemental analyses. X-ray diffraction studies were carried out on the dinuclear complexes revealing highly symmetrical rigid-rod structures. Cyclic voltammetric studies showed that compounds 2–7 undergo reversible and well-defined oxidations with high Kc values indicating thermodynamically stable mixed valence species. While the number of the oxidation waves of compounds 2, 6, and 7 are equivalent to the number of metal centers, the dinuclear complexes 3, 4, and 5 exhibit three reversible oxidation waves, one at significantly more positive potential. Two redox waves were attributed to the oxidation of the metal centers, while the remaining one is due to the oxidation of the butadiynediyl ligand. The electronic properties of complexes 2, 3, and 7 were investigated by spectroelectrochemical measurements.

Abstract

trans-Fe(depe)2I2 (depe =1,2-bis(diethylphosphino)ethane) was employed to stepwise incorporate Fe(II) centers into a rigid-rod butadiyne based 5,10,15,20-tetraferratetracosa-1,3,6,8,11,13,16,18,21,23-decayne. The iterative synthesis first connects two Fe(II) centers via a central butadiynediyl ligand to provide I-Fe(depe)2-C4-Fe(depe)2-I (2), then extends the system by substituting the terminal halides of 2 to yield Me3SiC4-Fe(depe)2-C4-Fe(depe)2-C4SiMe3 (3). Further modification of the termini gives the deprotected and stannylated compounds RC4-Fe(depe)2-C4-Fe(depe)2-C4R (4 and 5; R = H, Sn(CH3)3, respectively). Transmetalation with two more mononuclear units furnishes the homometallic tetranuclear compound I-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-I (6), to which two more butadiynyl units were attached to give Me3SiC4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4SiMe3 (7). All compounds were characterized by NMR, IR, and Raman spectroscopies and by elemental analyses. X-ray diffraction studies were carried out on the dinuclear complexes revealing highly symmetrical rigid-rod structures. Cyclic voltammetric studies showed that compounds 2–7 undergo reversible and well-defined oxidations with high Kc values indicating thermodynamically stable mixed valence species. While the number of the oxidation waves of compounds 2, 6, and 7 are equivalent to the number of metal centers, the dinuclear complexes 3, 4, and 5 exhibit three reversible oxidation waves, one at significantly more positive potential. Two redox waves were attributed to the oxidation of the metal centers, while the remaining one is due to the oxidation of the butadiynediyl ligand. The electronic properties of complexes 2, 3, and 7 were investigated by spectroelectrochemical measurements.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2013
Deposited On:07 Feb 2014 15:24
Last Modified:05 Apr 2016 17:30
Publisher:American Chemical Society
ISSN:0002-7863
Publisher DOI:https://doi.org/10.1021/ja400078c
PubMed ID:23406332

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations