UZH-Logo

Maintenance Infos

Human central auditory plasticity associated with tone sequence learning


Gottselig, J M; Brandeis, D; Hofer-Tinguely, G; Borbely, A A; Achermann, P (2004). Human central auditory plasticity associated with tone sequence learning. Learning and Memory, 11(2):162-171.

Abstract

We investigated learning-related changes in amplitude, scalp topography, and source localization of the mismatch negativity (MMN), a neurophysiological response correlated with auditory discrimination ability. Participants (n = 32) underwent two EEG recordings while they watched silent films and ignored auditory stimuli. Stimuli were a standard (probability = 85%) and two deviant (probability = 7.5% each for high [HD] and low [LD]) eight-tone sequences that differed in the frequency of one tone. Between recordings, subjects practiced discriminating the HD or LD from the standard for 6 min. The amplitude of the LD MMN increased significantly across recordings in both groups, whereas the amplitude of the HD MMN did not. The LD was easier to discriminate than was the HD. Thus, practicing either discrimination increased the MMN for the easier discrimination. Learning and changes in the LD MMN amplitude were highly correlated. Source localizations of event-related potentials (ERPs) to all stimuli revealed bilateral sources in superior temporal regions. Compared with the standard ERP, the LD ERP revealed a stronger source in the left superior temporal region in both recordings, whereas the right-sided source became stronger after learning. Consistent with prior studies of auditory plasticity in animals and humans, tone sequence learning induced rapid neurophysiological plasticity in the human central auditory system. The results also suggest that there is asymmetric hemispheric involvement in tone sequence discrimination learning and that discrimination difficulty influences the time course of learning-related neurophysiological changes.

Abstract

We investigated learning-related changes in amplitude, scalp topography, and source localization of the mismatch negativity (MMN), a neurophysiological response correlated with auditory discrimination ability. Participants (n = 32) underwent two EEG recordings while they watched silent films and ignored auditory stimuli. Stimuli were a standard (probability = 85%) and two deviant (probability = 7.5% each for high [HD] and low [LD]) eight-tone sequences that differed in the frequency of one tone. Between recordings, subjects practiced discriminating the HD or LD from the standard for 6 min. The amplitude of the LD MMN increased significantly across recordings in both groups, whereas the amplitude of the HD MMN did not. The LD was easier to discriminate than was the HD. Thus, practicing either discrimination increased the MMN for the easier discrimination. Learning and changes in the LD MMN amplitude were highly correlated. Source localizations of event-related potentials (ERPs) to all stimuli revealed bilateral sources in superior temporal regions. Compared with the standard ERP, the LD ERP revealed a stronger source in the left superior temporal region in both recordings, whereas the right-sided source became stronger after learning. Consistent with prior studies of auditory plasticity in animals and humans, tone sequence learning induced rapid neurophysiological plasticity in the human central auditory system. The results also suggest that there is asymmetric hemispheric involvement in tone sequence discrimination learning and that discrimination difficulty influences the time course of learning-related neurophysiological changes.

Citations

51 citations in Web of Science®
55 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

142 downloads since deposited on 11 Feb 2008
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2004
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:Cold Spring Harbor Laboratory Press
ISSN:1072-0502
Publisher DOI:https://doi.org/10.1101/lm.63304
PubMed ID:15054131

Download

[img]
Preview
Filetype: PDF
Size: 614kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations