(GT)n Dinucleotide repeat polymorphism of haem oxygenase-1 promotor region is not associated with inflammatory bowel disease risk or disease course

Hausmann, M; Paul, G; Kellermeier, S; Frey, I; Schölmerich, J; Falk, W; Menzel, K; Fried, M; Herfarth, H; Rogler, G

Hausmann, M; Paul, G; Kellermeier, S; Frey, I; Schölmerich, J; Falk, W; Menzel, K; Fried, M; Herfarth, H; Rogler, G (2008). (GT)n Dinucleotide repeat polymorphism of haem oxygenase-1 promotor region is not associated with inflammatory bowel disease risk or disease course. Clinical and Experimental Immunology, 153(1):81-85.

Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Haem oxygenase-1 (HO-1) up-regulation was suggested to reduce mucosal tissue damage in inflammatory bowel disease (IBD) and an up-regulation of HO-1 expression in patients with Crohn's disease (CD) and ulcerative colitis (UC) was demonstrated. A HO-1 gene promoter microsatellite (GT)(n) dinucleotide repeat polymorphism was associated with regulation of HO-1 in response to inflammatory stimuli. We therefore hypothesized that IBD patients might segregate into phenotypes with high or low HO-1 inducibility. Ethylenediamine tetraacetic acid blood samples were obtained from 179 CD patients, 110 UC patients and 56 control patients without inflammation. Genomic DNA was purified and the 5'-flanking region of the HO-1 gene containing the (GT)(n) dinucleotide repeat was amplified. Polymerase chain reaction (PCR) products were purified and the length of the PCR fragments was analysed. The number of (GT)(n) repeats in the population studied ranged from 13 to 42. The distribution of the allele frequencies was comparable in patients and controls for both the short and the long alleles. The frequencies of short-, middle- and long-sized alleles were not changed among the groups studied. No correlation was found between IBD and microsatellite instability detected in five individuals. Our data indicate that (GT)(n) dinucleotide repeats of the HO-1 promotor region have no significance for the pathophysiology and disease course of IBD.
Dinucleotide repeat polymorphism of heme oxygenase-1 promotor region is not associated with IBD risk or disease course

Martin Hausmann1,2, Gisela Paul1,3, Silvia Kellermeier1,2, Isabelle Frey2, Jürgen Schölmerich1, Werner Falk1, Katrin Menzel1, Michael Fried2, Hans Herfarth1,4, Gerhard Rogler1,2

1 Department of Internal Medicine I, University of Regensburg, Germany
2 present address: Clinic of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital of Zurich, Switzerland
3 present address: Division of Gastroenterology, UCSD Medical Center, San Diego, USA
4 present address: Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, USA

Running Title: Polymorphism of HO-1 promotor

Address for correspondence:

Martin Hausmann, PhD
Clinic of Gastroenterology and Hepatology
Department of Internal Medicine
University Hospital of Zurich
8091 Zurich, Switzerland
Tel. 41-44-255 9479
E-mail: martin.hausmann@usz.ch
Supported by the Deutsche Forschungsgemeinschaft (Ro 1236/8-1) and the BMBF “Kompetenznetz - Chronisch entzündliche Darmerkrankungen“ (Core facility Regensburg)

Key Words: Dinucleotide repeat polymorphism, heme oxygenase-1, promoter, IBD

Abbreviations: CD, Crohn’s disease; DSS, dextran sulphate sodium; HO-1, heme oxygenase-1; IBD, intestinal bowel disease; NF-κB, nuclear factor-kappa B; TNBS, trinitrobenzene sulphonic acid; UC, ulcerative colitis
Abstract

Background:
Heme oxygenase-1 (HO-1) up-regulation was suggested to reduce mucosal tissue damage in inflammatory bowel disease (IBD). An up-regulation of HO-1 expression in patients with Crohn’s disease (CD) and ulcerative colitis (UC) was demonstrated. A HO-1 gene promoter microsatellite (GT)$_n$ dinucleotide repeat polymorphism was associated with regulation of HO-1 in response to inflammatory stimuli. We therefore hypothesized that IBD patients might segregate into phenotypes with high or low HO-1 inducibility.

Methods:
EDTA blood samples were obtained from 179 CD patients, 110 UC patients and 56 control patients without inflammation. Genomic DNA was purified and the 5’-flanking region of the HO-1 gene containing the (GT)$_n$ dinucleotide repeat was amplified. PCR products were purified and length of the PCR fragments was analyzed.

Results:
The number of (GT)$_n$ repeats in the population studied ranged from 13 to 42. The distribution of the allele frequencies was comparable in patients and controls for both the short and the long allele. The frequencies of short-, middle- and long-sized alleles were not changed among studied groups. No correlation was found between IBD and microsatellite instability detected in 5 individuals.

Conclusion:
Our data indicate that (GT)$_n$ dinucleotide repeats of the HO-1 promotor region have no significance for the pathophysiology and disease course of IBD.
Introduction

Heme oxygenase-1 (HO-1) has attracted attention because of its anti-inflammatory property. Regarding inflammatory bowel disease (IBD) HO-1 up-regulation was suggested to ameliorate recovery by reducing mucosal tissue damage caused by an enduring exposure to reactive oxygen metabolites provoking oxidative stress [1]. HO-1 is the rate limiting enzyme in the conversion of heme into the potential antioxidants biliverdin/bilirubin, iron and carbon monoxide [2-4]. An up-regulation of HO-1 expression in patients with Crohn’s disease (CD) and ulcerative colitis (UC) could be demonstrated [5]. However, differences in the expression pattern of HO-1 could only be detected in IBD patients with severely inflamed mucosa versus diverticulitis and intestinal ischaemia as non-specific inflammatory controls. HO-1 is one of the major acute phase proteins that is up-regulated by a whole variety of inducers such as endotoxin, hydrogen peroxide, prostaglandins and cytokines (interleukin-1, tumor necrosis factor) known to be detectable during IBD.

Several in vivo models strongly support that HO-1 provides a potent cytoprotective effect. HO-1 knock out mice do not survive to term and mice that do survive to adulthood are abnormal and die within a year demonstrating signs of chronic inflammation in numerous organs [6;7]. A preventive HO-1 up-regulation in the established model of acute dextran sulphate sodium (DSS)-induced colitis caused an anti-inflammatory effect [5]. However, no protective effect could be detected in a therapeutic approach when HO-1 upregulation was induced after the onset of acute DSS-induced colitis or in chronic DSS-induced colitis. The protective role of HO-1 has been demonstrated indirectly in the acute model of trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats [8]. In these experiments inhibition of HO-1 prior to the induction of colitis by TNBS significantly increased the colonic inflammation. The
production of free radicals and the iNOS expression was significantly up-regulated, suggesting that HO-1 plays a role in attenuating experimental colitis. In vitro experiments support that HO-1 provides a mechanism in the protection of epithelial cells from apoptosis. Epithelial cell apoptosis has been demonstrated in DSS-induced colitis and is accompanied by a significant expression of the pro-apoptotic molecules Fas, Bax and p53 [9]. Induced up-regulation of HO-1 in a colonic carcinoma epithelial cell line (HT-29) resulted in a down-regulation of Fas-mediated caspase-3 activation [5]. Similar results were obtained with freshly isolated murine islets cells and a pancreatic cell line [9;10]. Thus, presently available data suggest a protective effect of HO-1 induction and an up-regulation of HO-1 expression in patients with inflamed intestinal mucosa. Interestingly, a HO-1 gene promoter microsatellite polymorphism was suggested to be associated with restenosis after angioplasty [11] and was identified as vascular anti-inflammatory factor [12]. (GT)$_n$ dinucleotide repeat polymorphism of the HO-1 promoter region that modulates the level of HO-1 inducibility was investigated. Short GT repeats (< 25) were associated with highly significant up-regulation of HO-1 in response to inflammatory stimuli [11;12]. We hypothesized that patients may segregate into phenotypes with high and low HO-1 inducibility providing more or less antioxidants respectively. As HO-1 may present an anti-inflammatory factor regulating colonic inflammation, we investigated variants of the HO-1 promoter region in 179 CD patients, 110 UC patients and 56 control patients without inflammation.
Materials and Methods

Patients

Blood samples from age-matched individuals were obtained from 179 CD patients, 110 UC patients and 56 control patients without inflammation from the German IBD competence network serum bank (Core facility Regensburg). The study was approved by the University of Regensburg Ethics Committee.

DNA-isolation

Genomic DNA was purified from human whole blood samples with the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Briefly, DNA was isolated following cell lysis and proteinase K digestion (56°C, 10 min). DNA was loaded on a QIAamp spin column, washed twice and eluted in 200 µl distilled water.

HO-1 genotype assessment

The 5’-flanking region of the HO-1 gene containing the (GT)n dinucleotide repeat was amplified as previously described [13]. Briefly, a PCR was performed using as forward primer 1 µl 5´-CAG CTT TCT GGA ACC TTC TGG-3´ (5 µM), carrying a 6-FAM fluorescent label (MWG biotech, Ebersberg, Germany), and as downstream primer 1 µl 5´-GAA ACA AAG TCT GGC CAT AGG AC-3´ (5 µM). Genomic DNA and primers were mixed in a 50 µl reaction including 1 µl dNTP (10 µM each, BD Biosciences Clontech, Heidelberg, Germany) and 1 µl Advantage™-HF2 Polymerase Mix (BD Biosciences Clontech, Heidelberg, Germany) in the recommended buffer. After pretreatment at 94°C for 10 min the PCR comprised 30 cycles with denaturing at 94°C for 30 seconds, annealing at 60°C for 30 seconds, extension at 68°C for 30
seconds and concluded with a extension step at 68°C for 30 min. The reactions were performed in a TRIO-Thermoblock (Biometra, Goettingen, Germany). PCR products were purified with the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany). Sequence analysis of the amplification product of an individual homozygous for the 211 base pair alleles showed correspondence with 23 \((GT)_n\) dinucleotide repeats (results not shown). Dinucleotide repeats were calculated as \((\text{PCR fragment length in bp} – 165) / 2 = \text{numbers of } (GT)_n\). Length of the PCR fragments was analyzed by the Medigenomix corporation (Planegg, Germany, figure 1). The number of GT repeats was identified by sizing of PCR products with the ABI 310 sequencer and the Genescan Analysis 2.1 software (Applied Biosystems, Foster City, CA).

Statistical analysis

For statistical analyses the SigmaPlot 2002 software package (version 8.02, Systat Software Inc. (SSI), San Jose, California, USA) was used. Percentages of allele frequencies are presented as box plots graph data with the median, the 25th and 75th percentile. Whiskers above and below the box indicate the 90th and 10th percentiles. Significances were calculated with Student’s unpaired t – test considered successful for \(p < 0.05\).
Results

Allele frequencies of the HO-1 (GT)$_n$ dinucleotide repeat polymorphism

The numbers of (GT)$_n$ dinucleotide repeats in the human HO-1 promotor was analyzed via length determination of an according PCR fragment (figure 1). The number of repeats in the population studied ranged from 13 to 42 (figure 2). The distribution of the allele frequencies was comparable in patients and controls for both the short and the long allele.

Allele frequency distribution

The distribution of GT repeats in the HO-1 promotor region among the studied individuals is shown in figure 3A. In the three groups, the 23 and 30 GT repeats were the most common alleles. Three allele subclasses according to the number of GT repeats were set: short-sized alleles (S) with less than 23 repeats, middle-sized alleles (M) with 23 - 32 GT repeats and long-sized alleles (L) with 33 – 42 repeats. The frequencies of different-sized alleles were compared between studied groups (figure 3B). The middle-sized alleles are shown to appear more often but were not varying among studied groups.

Microsatellite instability

Comparison of amplified DNA from blood samples of CD-, UC- and control patients allowed identification of microsatellite instability due to multiple PCR fragment lengths. Among the 179 CD patients analysed, 4 (2%) exhibited a microsatellite instability phenotype. The remaining 172 (98%) were classified as exhibiting a microsatellite stable phenotype. The number of GT repeats in the HO-1 promotor region showed a distribution range from 15 to 31 (median 26.5 ± 3.9). This was not
significantly different compared to stable phenotypes (median 28.5 ± 3.7). None of the 110 UC patients showed microsatellite instability. One control patient among the 56 tested (2%) displayed microsatellite instability (range 23 to 31, median 27 ± 2.7 compared to stable phenotypes 28 ± 3.9).

The frequencies of microsatellite instability was comparable in CD patients and controls. Individuals with microsatellite instability were excluded from allele frequency distribution analysis.
Discussion

In the present study we investigated (GT)$_n$ dinucleotide repeats of the HO-1 promotor region in IBD patients to prove whether individuals segregate into phenotypes with high and low HO-1 inducibility. We found no relationship between the frequency distribution and IBD and a lack of influence on disease course. The distribution of the (GT)$_n$ dinucleotide repeats among studied groups is stunningly similar to previous findings [14] demonstrating the 23 and 30 GT repeats as the most common alleles. Also the range of GT repeats found showed the expected allocation. Microsatellite instability was found but had no significance concerning IBD.

Lavrovsky et al. identified nuclear factor-kappa B (NF-κB) and AP-2-like binding sites in the 5' untranslated region of the human HO-1 gene and confirmed binding of transcription factors by DNase I footprint analysis [15]. NF-κB is the main target of anti-inflammatory therapies in IBD and we could show the activation of this transcription factor during human mucosal inflammation in situ [16]. Accordingly Paul et al. [5] could demonstrate an up-regulation of HO-1 expression in patients with CD and UC. Our data indicate that the different alleles of (GT)$_n$ repeats in the HO-1 promotor region have no significance at least with regard to IBD.

HO-1 is widely expressed in organs and tissues. It seems to be a novel protective factor with an indisputable potent anti-inflammatory and anti-oxidant effect. There has been increasing recognition of HO-1 promotor polymorphisms leading to reduced HO-1 expression may be associated with an increased risk of a variety of diseases. Longer (GT)$_n$ repeats were reported to be associated with higher susceptibility to the development of malignant tumors [17;18] or coronary artery atherosclerosis [19].

Contrary to the results for IBD presented in this work certain other inflammatory diseases may be associated with the size of (GT)$_n$ repeats. Yasuda et al [20] found
an association of long-sized alleles with susceptibility to pneumonia in the older Japanese population. Yamada et al [21] investigated the correlation between the length of the \((GT)_n\) repeats and susceptibility to the development of chronic pulmonary emphysema. He described that long-sized alleles may reduce HO-1 inducibility by reactive oxygen species in cigarette smoke, thereby resulting in the development of chronic pulmonary emphysema.
Figure legends

Figure 1: Amplified region of the HO-1 promoter containing the \((\text{GT})_n\) dinucleotide repeat. Alleles from a patient with 207 and 213 base pairs according to 21 and 24 \((\text{GT})_n\) dinucleotide repeats respectively (upper plot). DNA standard (lower plot).

Figure 2: Allele frequencies of the HO-1 promoter \((\text{GT})_n\) dinucleotide repeats.

Figure 3: Frequency distribution of HO-1 promoter \((\text{GT})_n\) dinucleotide repeats. (A) Individual allele pattern. (B) Distribution of short- (S), middle- (M) and long-sized (L) GT repeats. Control patients (white columns), UC patients (grey columns) and CD patients (black columns).
Figure 1
Figure 2
Figure 3
Reference List

