UZH-Logo

Afferent nerve sensitivity is decreased by an iNOS-dependent mechanism during indomethacin-induced inflammation in the murine jejunum in vitro


Xue, B; Hausmann, M; Müller, M H; Pesch, T; Karpitschka, M; Kasparek, M S; Hu, W C; Sibaev, A; Rogler, G; Kreis, M E (2009). Afferent nerve sensitivity is decreased by an iNOS-dependent mechanism during indomethacin-induced inflammation in the murine jejunum in vitro. Neurogastroenterology and Motility, 21(3):322-334.

Abstract

Abstract Evidence exists that visceral afferent sensitivity is subject to regulatory mechanisms. We hypothesized that afferent sensitivity is decreased in the small intestine during intestinal inflammation by an inducible nitric oxide synthase (iNOS)-dependent mechanism. C57BL/6 mice were injected twice with vehicle or 60 mg kg(-1) indomethacin subcutaneously to induce intestinal inflammation. Afferent sensitivity was recorded on day 3 from a 2-cm segment of jejunum in vitro by extracellular multi-unit afferent recordings from the mesenteric nerve bundle. In subgroups (n = 6), iNOS was inhibited selectively by L-N6-(1-iminoethyl)-lysine (L-NIL) given either chronically from day 1-3 (3 mg kg(-1) twice daily i.p.) or acutely into the organ bath (30 mumol L(-1)). The indomethacin-induced increase of macroscopic and microscopic scores of intestinal inflammation (both P < 0.05) were unchanged after pretreatment with L-NIL. Peak afferent firing following bradykinin (0.5 mumol L(-1)) was 55 +/- 8 impulse s(-1) during inflammation vs 97 +/- 7 impulse s(-1) in controls (P < 0.05). Normal firing rate was preserved following L-NIL pretreatment (112 +/- 16 impulse s(-1)) or acute administration of L-NIL (108 +/- 14 impulse s(-1)). A similar L-NIL dependent reduction was observed for 5-HT (250 mumol L(-1)) and mechanical ramp distension from 20 to 60 cmH(2)O (both P < 0.05). Intraluminal pressure peaks were decreased to 0.66 +/- 0.1 cmH(2)O during inflammation compared to 2.51 +/- 0.3 in controls (P < 0.01). Afferent sensitivity is decreased by an iNOS-dependent mechanism during intestinal inflammation which appears to be independent of the inflammatory response. This suggests that iNOS-dependent nitric oxide production alters afferent sensitivity during inflammation by interfering with signal transduction to afferent nerves rather than by attenuating intestinal inflammation.

Abstract Evidence exists that visceral afferent sensitivity is subject to regulatory mechanisms. We hypothesized that afferent sensitivity is decreased in the small intestine during intestinal inflammation by an inducible nitric oxide synthase (iNOS)-dependent mechanism. C57BL/6 mice were injected twice with vehicle or 60 mg kg(-1) indomethacin subcutaneously to induce intestinal inflammation. Afferent sensitivity was recorded on day 3 from a 2-cm segment of jejunum in vitro by extracellular multi-unit afferent recordings from the mesenteric nerve bundle. In subgroups (n = 6), iNOS was inhibited selectively by L-N6-(1-iminoethyl)-lysine (L-NIL) given either chronically from day 1-3 (3 mg kg(-1) twice daily i.p.) or acutely into the organ bath (30 mumol L(-1)). The indomethacin-induced increase of macroscopic and microscopic scores of intestinal inflammation (both P < 0.05) were unchanged after pretreatment with L-NIL. Peak afferent firing following bradykinin (0.5 mumol L(-1)) was 55 +/- 8 impulse s(-1) during inflammation vs 97 +/- 7 impulse s(-1) in controls (P < 0.05). Normal firing rate was preserved following L-NIL pretreatment (112 +/- 16 impulse s(-1)) or acute administration of L-NIL (108 +/- 14 impulse s(-1)). A similar L-NIL dependent reduction was observed for 5-HT (250 mumol L(-1)) and mechanical ramp distension from 20 to 60 cmH(2)O (both P < 0.05). Intraluminal pressure peaks were decreased to 0.66 +/- 0.1 cmH(2)O during inflammation compared to 2.51 +/- 0.3 in controls (P < 0.01). Afferent sensitivity is decreased by an iNOS-dependent mechanism during intestinal inflammation which appears to be independent of the inflammatory response. This suggests that iNOS-dependent nitric oxide production alters afferent sensitivity during inflammation by interfering with signal transduction to afferent nerves rather than by attenuating intestinal inflammation.

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

78 downloads since deposited on 22 Dec 2008
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Gastroenterology and Hepatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:22 Dec 2008 14:42
Last Modified:05 Apr 2016 12:45
Publisher:Wiley-Blackwell
ISSN:1350-1925
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-2982.2008.01225.x
PubMed ID:19077108
Permanent URL: http://doi.org/10.5167/uzh-9037

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations