UZH-Logo

Maintenance Infos

White and gray matter abnormalities in the brain of patients with fibromyalgia: A diffusion-tensor and volumetric imaging study


Lutz, J; Jäger, L; de Quervain, D J F; Krauseneck, T; Padberg, F; Wichnalek, M; Beyer, A; Stahl, R; Zirngibl, B; Morhard, D; Reiser, M; Schelling, G (2008). White and gray matter abnormalities in the brain of patients with fibromyalgia: A diffusion-tensor and volumetric imaging study. Arthritis and Rheumatism, 58(12):3960-3969.

Abstract

OBJECTIVE: To use a combination of magnetic resonance diffusion-tensor imaging (MR-DTI) and MR imaging of voxel-based morphometry (MR-VBM) in patients with fibromyalgia syndrome (FMS) to determine microstructural and volume changes in the central neuronal networks involved in the sensory-discriminative and affective-motivational characteristics of pain, anxiety, memory, and regulation of the stress response. METHODS: Thirty female patients with FMS and 30 healthy female control subjects were studied. Predefined areas of the brain were measured for volume of gray matter by MR-VBM and for diffusivity and fractional anisotropy (FA) by MR-DTI. Higher FA values and reduced diffusivity are thought to reflect increased complexity of brain-tissue microstructure. RESULTS: MR-VBM and MR-DTI demonstrated a striking pattern of changes in brain morphology in patients with FMS. Both thalami, the thalamocortical tracts, and both insular regions showed significant decreases in FA. In contrast, increases in FA and decreases in gray matter volume were seen in the postcentral gyri, amygdalae, hippocampi, superior frontal gyri, and anterior cingulate gyri. Increased pain intensity scores were correlated with changes in MR-DTI measurements in the right superior frontal gyrus. Increased fatigue was correlated with changes in the left superior frontal and left anterior cingulate gyrus, and self-perceived physical impairment was correlated with changes in the left postcentral gyrus. Higher intensity scores for stress symptoms were correlated negatively with diffusivity in the thalamus and FA in the left insular cortex. No relationship was found between MR-VBM measurements and symptom intensity scores. CONCLUSION: MR-DTI allows the visualization of microstructural changes in the brain of patients with FMS, appears to be more sensitive than MR-VBM, and may serve as an additional diagnostic technique in FMS and probably other dysfunctional pain syndromes.

Abstract

OBJECTIVE: To use a combination of magnetic resonance diffusion-tensor imaging (MR-DTI) and MR imaging of voxel-based morphometry (MR-VBM) in patients with fibromyalgia syndrome (FMS) to determine microstructural and volume changes in the central neuronal networks involved in the sensory-discriminative and affective-motivational characteristics of pain, anxiety, memory, and regulation of the stress response. METHODS: Thirty female patients with FMS and 30 healthy female control subjects were studied. Predefined areas of the brain were measured for volume of gray matter by MR-VBM and for diffusivity and fractional anisotropy (FA) by MR-DTI. Higher FA values and reduced diffusivity are thought to reflect increased complexity of brain-tissue microstructure. RESULTS: MR-VBM and MR-DTI demonstrated a striking pattern of changes in brain morphology in patients with FMS. Both thalami, the thalamocortical tracts, and both insular regions showed significant decreases in FA. In contrast, increases in FA and decreases in gray matter volume were seen in the postcentral gyri, amygdalae, hippocampi, superior frontal gyri, and anterior cingulate gyri. Increased pain intensity scores were correlated with changes in MR-DTI measurements in the right superior frontal gyrus. Increased fatigue was correlated with changes in the left superior frontal and left anterior cingulate gyrus, and self-perceived physical impairment was correlated with changes in the left postcentral gyrus. Higher intensity scores for stress symptoms were correlated negatively with diffusivity in the thalamus and FA in the left insular cortex. No relationship was found between MR-VBM measurements and symptom intensity scores. CONCLUSION: MR-DTI allows the visualization of microstructural changes in the brain of patients with FMS, appears to be more sensitive than MR-VBM, and may serve as an additional diagnostic technique in FMS and probably other dysfunctional pain syndromes.

Citations

101 citations in Web of Science®
121 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 30 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:30 Dec 2008 15:05
Last Modified:16 Aug 2016 10:13
Publisher:Wiley-Blackwell
ISSN:0004-3591
Publisher DOI:https://doi.org/10.1002/art.24070
PubMed ID:19035484

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations