UZH-Logo

Maintenance Infos

Inside out and upside down: Tracing the assembly of a simulated disk galaxy using mono-age stellar populations


Bird, Jonathan C; Kazantzidis, Stelios; Weinberg, David H; Guedes, Javiera; Callegari, Simone; Mayer, Lucio; Madau, Piero (2013). Inside out and upside down: Tracing the assembly of a simulated disk galaxy using mono-age stellar populations. Astrophysical Journal, 773(1):43.

Abstract

We analyze the present day structure and assembly history of a high-resolution hydrodynamic simulation of the formation of a Milky-Way-(MW)-like disk galaxy, from the "Eris" simulation suite, dissecting it into cohorts of stars formed at different epochs of cosmic history. At z = 0, stars with t form < 2 Gyr mainly occupy the stellar spheroid, with the oldest (earliest forming) stars having more centrally concentrated profiles. The younger age cohorts populate disks of progressively longer radial scale lengths and shorter vertical scale heights. At a given radius, the vertical density profiles and velocity dispersions of stars vary smoothly as a function of age, and the superposition of old, vertically extended and young, vertically compact cohorts gives rise to a double-exponential profile like that observed in the MW. Turning to formation history, we find that the trends of spatial structure and kinematics with stellar age are largely imprinted at birth, or immediately thereafter. Stars that form during the active merger phase at z > 3 are quickly scattered into rounded, kinematically hot configurations. The oldest disk cohorts form in structures that are radially compact and relatively thick, while subsequent cohorts form in progressively larger, thinner, colder configurations from gas with increasing levels of rotational support. The disk thus forms "inside out" in a radial sense and "upside down" in a vertical sense. Secular heating and radial migration influence the final state of each age cohort, but the changes they produce are small compared to the trends established at formation. The predicted correlations of stellar age with spatial and kinematic structure are in good qualitative agreement with the correlations observed for mono-abundance stellar populations in the MW.

Abstract

We analyze the present day structure and assembly history of a high-resolution hydrodynamic simulation of the formation of a Milky-Way-(MW)-like disk galaxy, from the "Eris" simulation suite, dissecting it into cohorts of stars formed at different epochs of cosmic history. At z = 0, stars with t form < 2 Gyr mainly occupy the stellar spheroid, with the oldest (earliest forming) stars having more centrally concentrated profiles. The younger age cohorts populate disks of progressively longer radial scale lengths and shorter vertical scale heights. At a given radius, the vertical density profiles and velocity dispersions of stars vary smoothly as a function of age, and the superposition of old, vertically extended and young, vertically compact cohorts gives rise to a double-exponential profile like that observed in the MW. Turning to formation history, we find that the trends of spatial structure and kinematics with stellar age are largely imprinted at birth, or immediately thereafter. Stars that form during the active merger phase at z > 3 are quickly scattered into rounded, kinematically hot configurations. The oldest disk cohorts form in structures that are radially compact and relatively thick, while subsequent cohorts form in progressively larger, thinner, colder configurations from gas with increasing levels of rotational support. The disk thus forms "inside out" in a radial sense and "upside down" in a vertical sense. Secular heating and radial migration influence the final state of each age cohort, but the changes they produce are small compared to the trends established at formation. The predicted correlations of stellar age with spatial and kinematic structure are in good qualitative agreement with the correlations observed for mono-abundance stellar populations in the MW.

Citations

57 citations in Web of Science®
57 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 11 Feb 2014
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2013
Deposited On:11 Feb 2014 10:03
Last Modified:05 Apr 2016 17:31
Publisher:IOP Publishing
ISSN:0004-637X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1088/0004-637X/773/1/43

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations