UZH-Logo

Maintenance Infos

A sub-parsec resolution simulation of the Milky Way: global structure of the interstellar medium and properties of molecular clouds


Renaud, F; Bournaud, F; Emsellem, E; Elmegreen, B; Teyssier, R; Alves, J; Chapon, D; Combes, F; Dekel, A; Gabor, J; Hennebelle, P; Kraljic, K (2013). A sub-parsec resolution simulation of the Milky Way: global structure of the interstellar medium and properties of molecular clouds. Monthly Notices of the Royal Astronomical Society, 436(2):1836-1851.

Abstract

We present a self-consistent hydrodynamical simulation of a Milky Way-like galaxy at a resolution of 0.05 pc. The model includes star formation and a new implementation of stellar feedback through photoionization, radiative pressure and supernovae. The simulation resolves the structure of the interstellar medium at sub-parsec resolution for a few cloud lifetimes and at 0.05 pc for about a cloud-crossing time. The turbulence cascade and gravitation from kpc scales are de facto included in smaller structures like molecular clouds. We show that the formation of a bar influences the dynamics of the central ˜100 pc by creating resonances. At larger radii, the spiral arms host the formation of regularly spaced clouds: beads on a string and spurs. These instabilities pump turbulent energy into the gas, generally in the supersonic regime. Because of asymmetric drift, the supernovae explode outside their gaseous nursery, which diminishes the effect of feedback on the structure of clouds. The evolution of clouds is thus mostly due to fragmentation and gas consumption, regulated mainly by supersonic turbulence. The transition from turbulence-supported to self-gravitating gas is detected in the gas density probability distribution function at ˜2000 cm-3. The power-spectrum density suggests that gravitation governs the hierarchical organization of structures from the galactic scale down to a few pc.

We present a self-consistent hydrodynamical simulation of a Milky Way-like galaxy at a resolution of 0.05 pc. The model includes star formation and a new implementation of stellar feedback through photoionization, radiative pressure and supernovae. The simulation resolves the structure of the interstellar medium at sub-parsec resolution for a few cloud lifetimes and at 0.05 pc for about a cloud-crossing time. The turbulence cascade and gravitation from kpc scales are de facto included in smaller structures like molecular clouds. We show that the formation of a bar influences the dynamics of the central ˜100 pc by creating resonances. At larger radii, the spiral arms host the formation of regularly spaced clouds: beads on a string and spurs. These instabilities pump turbulent energy into the gas, generally in the supersonic regime. Because of asymmetric drift, the supernovae explode outside their gaseous nursery, which diminishes the effect of feedback on the structure of clouds. The evolution of clouds is thus mostly due to fragmentation and gas consumption, regulated mainly by supersonic turbulence. The transition from turbulence-supported to self-gravitating gas is detected in the gas density probability distribution function at ˜2000 cm-3. The power-spectrum density suggests that gravitation governs the hierarchical organization of structures from the galactic scale down to a few pc.

Citations

55 citations in Web of Science®
53 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

39 downloads since deposited on 11 Feb 2014
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:December 2013
Deposited On:11 Feb 2014 11:50
Last Modified:05 Apr 2016 17:31
Publisher:Oxford University Press
ISSN:0035-8711
Additional Information:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Royal Astronomical Society. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stt1698
Permanent URL: https://doi.org/10.5167/uzh-90720

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations