UZH-Logo

Maintenance Infos

Relativistic effects in galaxy clustering in a parametrized post-Friedmann universe


Lombriser, Lucas; Yoo, Jaiyul; Koyama, Kazuya (2013). Relativistic effects in galaxy clustering in a parametrized post-Friedmann universe. Physical Review D (Particles, Fields, Gravitation and Cosmology), 87(10):104019.

Abstract

We explore the signatures of quintessence and modified gravity theories in the relativistic description of galaxy clustering within a parametrized post-Friedmann framework. For this purpose, we develop a calibration method to consistently account for horizon-scale effects in the linear parametrized post-Friedmann perturbations of minimally and nonminimally coupled scalar-tensor theories and test it against the full model-specific fluctuations. We further study the relativistic effects in galaxy clustering for the normal and self-accelerating branches of the Dvali-Gabadadze-Porrati braneworld model as well as for phenomenological modifications of gravity. We quantify the impact of modified gravity and dark energy models on galaxy clustering by computing the velocity-to-matter density ratio F, the velocity contribution R, and the potential contribution P and give an estimate of their detectability in future galaxy surveys. Our results show that, in general, the relativistic correction contains additional information on gravity and dark energy, which needs to be taken into account in consistent horizon-scale tests of departures from ΛCDM using the galaxy-density field.

We explore the signatures of quintessence and modified gravity theories in the relativistic description of galaxy clustering within a parametrized post-Friedmann framework. For this purpose, we develop a calibration method to consistently account for horizon-scale effects in the linear parametrized post-Friedmann perturbations of minimally and nonminimally coupled scalar-tensor theories and test it against the full model-specific fluctuations. We further study the relativistic effects in galaxy clustering for the normal and self-accelerating branches of the Dvali-Gabadadze-Porrati braneworld model as well as for phenomenological modifications of gravity. We quantify the impact of modified gravity and dark energy models on galaxy clustering by computing the velocity-to-matter density ratio F, the velocity contribution R, and the potential contribution P and give an estimate of their detectability in future galaxy surveys. Our results show that, in general, the relativistic correction contains additional information on gravity and dark energy, which needs to be taken into account in consistent horizon-scale tests of departures from ΛCDM using the galaxy-density field.

Citations

36 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

37 downloads since deposited on 11 Feb 2014
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:2013
Deposited On:11 Feb 2014 10:13
Last Modified:05 Apr 2016 17:32
Publisher:American Physical Society
ISSN:1550-2368
Publisher DOI:https://doi.org/10.1103/PhysRevD.87.104019
Permanent URL: https://doi.org/10.5167/uzh-90754

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 903kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations