UZH-Logo

Maintenance Infos

Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate


Betizeau, Marion; Cortay, Veronique; Patti, Dorothée; Pfister, Sabina; Gautier, Elodie; Bellemin-Ménard, Angèle; Afanassieff, Marielle; Huissoud, Cyril; Douglas, Rodney J; Kennedy, Henry; Dehay, Colette (2013). Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron, 80(2):442-457.

Abstract

Long-term ex vivo live imaging combined with unbiased sampling of cycling precursors shows that macaque outer subventricular zone (OSVZ) includes four distinct basal radial glial (bRG) cell morphotypes, bearing apical and/or basal processes in addition to nonpolar intermediate progenitors (IPs). Each of the five precursor types exhibits extensive self-renewal and proliferative capacities as well as the ability to directly generate neurons, albeit with different frequencies. Cell-cycle parameters exhibited an unusual stage-specific regulation with short cell-cycle duration and increased rates of proliferative divisions during supragranular layer production at late corticogenesis. State transition analysis of an extensive clonal database reveals bidirectional transitions between OSVZ precursor types as well as stage-specific differences in their progeny and topology of the lineage relationships. These results explore rodent-primate differences and show that primate cortical neurons are generated through complex lineages by a mosaic of precursors, thereby providing an innovative framework for understanding specific features of primate corticogenesis.

Long-term ex vivo live imaging combined with unbiased sampling of cycling precursors shows that macaque outer subventricular zone (OSVZ) includes four distinct basal radial glial (bRG) cell morphotypes, bearing apical and/or basal processes in addition to nonpolar intermediate progenitors (IPs). Each of the five precursor types exhibits extensive self-renewal and proliferative capacities as well as the ability to directly generate neurons, albeit with different frequencies. Cell-cycle parameters exhibited an unusual stage-specific regulation with short cell-cycle duration and increased rates of proliferative divisions during supragranular layer production at late corticogenesis. State transition analysis of an extensive clonal database reveals bidirectional transitions between OSVZ precursor types as well as stage-specific differences in their progeny and topology of the lineage relationships. These results explore rodent-primate differences and show that primate cortical neurons are generated through complex lineages by a mosaic of precursors, thereby providing an innovative framework for understanding specific features of primate corticogenesis.

Citations

93 citations in Web of Science®
98 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2013
Deposited On:13 Feb 2014 13:39
Last Modified:05 Apr 2016 17:33
Publisher:Cell Press (Elsevier)
Number of Pages:16
ISSN:0896-6273
Publisher DOI:https://doi.org/10.1016/j.neuron.2013.09.032
PubMed ID:24139044

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations