UZH-Logo

Maintenance Infos

Dynamics of EEG spindle frequency activity during extended sleep in humans: relationship to slow-wave activity and time of day.


Aeschbach, D; Dijk, D J; Borbely, A A (1997). Dynamics of EEG spindle frequency activity during extended sleep in humans: relationship to slow-wave activity and time of day. Brain Research, 748(1-2):131-136.

Abstract

The dynamics of EEG spindle frequency activity (SFA; spectral power density in the 12.25-15.0 Hz range) and its relationship to slow-wave activity (SWA; 0.75-4.5 Hz) were investigated in long sleep episodes (> 12 h). Young healthy men went to bed at either 19:00 h (early sleep; prior waking 36 h, n = 9) or 24:00 h (late sleep; prior waking 17 h, n = 8). In both nights, SWA in non-rapid-eye-movement sleep (NREMS) decreased over the first three to four 1.5-h intervals and remained at a low level in the subsequent five to six 1.5-h intervals. In contrast, the changes of SFA were more variable and differed between the lower (12.25-13.0 Hz), middle (13.25-14.0 Hz) and higher frequency bin (14.25-15.0 Hz). A pronounced influence of time of day was present in the lower and higher SFA bin, when the dynamics were analyzed with respect to clock time. In both the early and late sleep condition, power density in the lower bin was highest between 2:00 and 5:00 h in the morning and decreased thereafter. In the higher bin, power density was low in the early morning hours and increased as sleep was extended into the daytime hours. The results provide further evidence for a frequency-specific circadian modulation of SFA which becomes more evident at a time when SWA is low.

The dynamics of EEG spindle frequency activity (SFA; spectral power density in the 12.25-15.0 Hz range) and its relationship to slow-wave activity (SWA; 0.75-4.5 Hz) were investigated in long sleep episodes (> 12 h). Young healthy men went to bed at either 19:00 h (early sleep; prior waking 36 h, n = 9) or 24:00 h (late sleep; prior waking 17 h, n = 8). In both nights, SWA in non-rapid-eye-movement sleep (NREMS) decreased over the first three to four 1.5-h intervals and remained at a low level in the subsequent five to six 1.5-h intervals. In contrast, the changes of SFA were more variable and differed between the lower (12.25-13.0 Hz), middle (13.25-14.0 Hz) and higher frequency bin (14.25-15.0 Hz). A pronounced influence of time of day was present in the lower and higher SFA bin, when the dynamics were analyzed with respect to clock time. In both the early and late sleep condition, power density in the lower bin was highest between 2:00 and 5:00 h in the morning and decreased thereafter. In the higher bin, power density was low in the early morning hours and increased as sleep was extended into the daytime hours. The results provide further evidence for a frequency-specific circadian modulation of SFA which becomes more evident at a time when SWA is low.

Citations

51 citations in Web of Science®
54 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:14 February 1997
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:Elsevier
ISSN:0006-8993
Publisher DOI:10.1016/S0006-8993(96)01275-9
PubMed ID:9067453

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations