UZH-Logo

Amelogenin in cranio-facial development: the tooth as a model to study the role of amelogenin during embryogenesis


Gruenbaum-Cohen, Y; Tucker, A S; Haze, A; Shilo, D; Taylor, A L; Shay, B; Sharpe, P T; Mitsiadis, T A; Ornoy, A; Blumenfeld, A; Deutsch, D (2008). Amelogenin in cranio-facial development: the tooth as a model to study the role of amelogenin during embryogenesis. Journal of Experimental Zoology. Part B: Molecular and Developmental Evolution, 312B(5):445-457.

Abstract

The amelogenins comprise 90% of the developing extracellular enamel matrix proteins and play a major role in the biomineralization and structural organization of enamel. Amelogenins were also detected, in smaller amounts, in postnatal calcifying mesenchymal tissues, and in several nonmineralizing tissues including brain. Low molecular mass amelogenin isoforms were suggested to have signaling activity; to produce ectopically chondrogenic and osteogenic-like tissue and to affect mouse tooth germ differentiation in vitro. Recently, some amelogenin isoforms were found to bind to the cell surface receptors; LAMP-1, LAMP-2 and CD63, and subsequently localize to the perinuclear region of the cell. The recombinant amelogenin protein (rHAM(+)) alone brought about regeneration of the tooth supporting tissues: cementum, periodontal ligament and alveolar bone, in the dog model, through recruitment of progenitor cells and mesenchymal stem cells.We show that amelogenin is expressed in various tissues of the developing mouse embryonic cranio-facial complex such as brain, eye, ganglia, peripheral nerve trunks, cartilage and bone, and is already expressed at E10.5 in the brain and eye, long before the initiation of tooth formation. Amelogenin protein expression was detected in the tooth germ (dental lamina) already at E13.5, much earlier than previously reported (E19). Application of amelogenin (rHAM(+)) beads together with DiI, on E13.5 and E14.5 embryonic mandibular mesenchyme and on embryonic tooth germ, revealed recruitment of mesenchymal cells. The present results indicate that amelogenin has an important role in many tissues of the cranio-facial complex during mouse embryonic development and differentiation, and might be a multifunctional protein.

The amelogenins comprise 90% of the developing extracellular enamel matrix proteins and play a major role in the biomineralization and structural organization of enamel. Amelogenins were also detected, in smaller amounts, in postnatal calcifying mesenchymal tissues, and in several nonmineralizing tissues including brain. Low molecular mass amelogenin isoforms were suggested to have signaling activity; to produce ectopically chondrogenic and osteogenic-like tissue and to affect mouse tooth germ differentiation in vitro. Recently, some amelogenin isoforms were found to bind to the cell surface receptors; LAMP-1, LAMP-2 and CD63, and subsequently localize to the perinuclear region of the cell. The recombinant amelogenin protein (rHAM(+)) alone brought about regeneration of the tooth supporting tissues: cementum, periodontal ligament and alveolar bone, in the dog model, through recruitment of progenitor cells and mesenchymal stem cells.We show that amelogenin is expressed in various tissues of the developing mouse embryonic cranio-facial complex such as brain, eye, ganglia, peripheral nerve trunks, cartilage and bone, and is already expressed at E10.5 in the brain and eye, long before the initiation of tooth formation. Amelogenin protein expression was detected in the tooth germ (dental lamina) already at E13.5, much earlier than previously reported (E19). Application of amelogenin (rHAM(+)) beads together with DiI, on E13.5 and E14.5 embryonic mandibular mesenchyme and on embryonic tooth germ, revealed recruitment of mesenchymal cells. The present results indicate that amelogenin has an important role in many tissues of the cranio-facial complex during mouse embryonic development and differentiation, and might be a multifunctional protein.

Citations

15 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

600 downloads since deposited on 29 Dec 2008
91 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:18 December 2008
Deposited On:29 Dec 2008 10:08
Last Modified:05 Apr 2016 12:46
Publisher:Wiley-Blackwell
ISSN:1552-5007
Additional Information:The attached file is a preprint (accepted version) of an article published in: Journal of Experimental Zoology. Part B: Molecular and Developmental Evolution
Publisher DOI:10.1002/jez.b.21255
PubMed ID:19097165
Permanent URL: http://doi.org/10.5167/uzh-9207

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 7MB
View at publisher

[img]Filetype: PDF - Registered users only
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations