UZH-Logo

Maintenance Infos

Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states


CMS Collaboration; Chatrchyan, S; Khachatryan, V; Sirunyan, A M; et al; Chiochia, V; Kilminster, B; Robmann, P (2014). Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. Journal of High Energy Physics, 2014(96):online.

Abstract

A search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported. The event sample corresponds to an integrated luminosity of 4.9 fb−1 and 19.4 fb−1 collected with the CMS detector in pp collisions at s√ = 7 and 8 TeV, respectively. The Higgs boson candidates are selected in events with two or three charged leptons. An excess of events above background is observed, consistent with the expectation from the standard model Higgs boson with a mass of around 125 GeV. The probability to observe an excess equal or larger than the one seen, under the background-only hypothesis, corresponds to a significance of 4.3 standard deviations for m H = 125.6 GeV. The observed signal cross section times the branching fraction to WW for m H = 125.6 GeV is 0.72+0.20−0.18 times the standard model expectation. The spin-parity J P = 0+ hypothesis is favored against a narrow resonance with J P = 2+ or J P = 0− that decays to a W-boson pair. This result provides strong evidence for a Higgs-like boson decaying to a W-boson pair.

A search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported. The event sample corresponds to an integrated luminosity of 4.9 fb−1 and 19.4 fb−1 collected with the CMS detector in pp collisions at s√ = 7 and 8 TeV, respectively. The Higgs boson candidates are selected in events with two or three charged leptons. An excess of events above background is observed, consistent with the expectation from the standard model Higgs boson with a mass of around 125 GeV. The probability to observe an excess equal or larger than the one seen, under the background-only hypothesis, corresponds to a significance of 4.3 standard deviations for m H = 125.6 GeV. The observed signal cross section times the branching fraction to WW for m H = 125.6 GeV is 0.72+0.20−0.18 times the standard model expectation. The spin-parity J P = 0+ hypothesis is favored against a narrow resonance with J P = 2+ or J P = 0− that decays to a W-boson pair. This result provides strong evidence for a Higgs-like boson decaying to a W-boson pair.

Citations

42 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

17 downloads since deposited on 19 Feb 2014
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2014
Deposited On:19 Feb 2014 08:30
Last Modified:05 Apr 2016 17:37
Publisher:Springer
ISSN:1029-8479
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/JHEP01(2014)096
Related URLs:http://arxiv.org/abs/1312.1129
Permanent URL: https://doi.org/10.5167/uzh-92185

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations