UZH-Logo

Maintenance Infos

Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis


Braun, Niko; Sen, Kontheari; Alscher, M Dominik; Fritz, Peter; Kimmel, Martin; Morelle, Johann; Goffin, Eric; Jörres, Achim; Wüthrich, Rudolf P; Cohen, Clemens D; Segerer, Stephan (2013). Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis. Peritoneal Dialysis International, 33(5):515-528.

Abstract

BACKGROUND: Periostin is a matricellular protein involved in tissue remodeling through the promotion of adhesion, cell survival, cellular dedifferentiation, and fibrogenesis. It can be induced by transforming growth factor beta and high glucose concentrations. We hypothesized that this protein might be expressed in the peritoneal cavity of patients on peritoneal dialysis (PD) and even more in patients with signs of encapsulating peritoneal sclerosis (EPS).
METHOD: In this retrospective study, we included peritoneal biopsies from patients on PD with EPS (n = 7) and without signs of EPS (n = 10), and we compared them with biopsies taken during hernia repair from patients not on PD (n = 11) and during various procedures from uremic patients not on PD (n = 6). Periostin was localized by immunohistochemistry, scored semiquantitatively, and quantified by morphometry. Periostin protein concentrations were measured by ELISA in dialysates from 15 patients. Periostin messenger RNA was quantified in vitro in peritoneal fibroblasts.
RESULTS: In control biopsies, periostin was present in the walls of larger arteries and focally in extracellular matrix in the submesothelial zone. Patients on PD demonstrated interstitial periostin in variable amounts depending on the severity of submesothelial fibrosis. In EPS, periostin expression was very prominent in the sclerosis layer. The area of periostin was significantly larger in EPS biopsies than in control biopsies, and the percentage of periostin-positive area correlated with the thickness of the submesothelial fibrosis zone. Periostin concentrations in dialysate increased significantly with time on PD in patients without signs of EPS; in patients with EPS, periostin concentrations in dialysate were low and demonstrated the smallest increase with time. In vitro, periostin was found to be strongly expressed by peritoneal fibroblasts.
CONCLUSION: Periostin is strongly expressed by fibroblasts and deposited in the peritoneal cavity of patients with EPS and with simple peritoneal fibrosis on PD. This protein might play a role in the progression of peritoneal injury, and low levels of periostin after prolonged time on PD might be a marker of EPS.

BACKGROUND: Periostin is a matricellular protein involved in tissue remodeling through the promotion of adhesion, cell survival, cellular dedifferentiation, and fibrogenesis. It can be induced by transforming growth factor beta and high glucose concentrations. We hypothesized that this protein might be expressed in the peritoneal cavity of patients on peritoneal dialysis (PD) and even more in patients with signs of encapsulating peritoneal sclerosis (EPS).
METHOD: In this retrospective study, we included peritoneal biopsies from patients on PD with EPS (n = 7) and without signs of EPS (n = 10), and we compared them with biopsies taken during hernia repair from patients not on PD (n = 11) and during various procedures from uremic patients not on PD (n = 6). Periostin was localized by immunohistochemistry, scored semiquantitatively, and quantified by morphometry. Periostin protein concentrations were measured by ELISA in dialysates from 15 patients. Periostin messenger RNA was quantified in vitro in peritoneal fibroblasts.
RESULTS: In control biopsies, periostin was present in the walls of larger arteries and focally in extracellular matrix in the submesothelial zone. Patients on PD demonstrated interstitial periostin in variable amounts depending on the severity of submesothelial fibrosis. In EPS, periostin expression was very prominent in the sclerosis layer. The area of periostin was significantly larger in EPS biopsies than in control biopsies, and the percentage of periostin-positive area correlated with the thickness of the submesothelial fibrosis zone. Periostin concentrations in dialysate increased significantly with time on PD in patients without signs of EPS; in patients with EPS, periostin concentrations in dialysate were low and demonstrated the smallest increase with time. In vitro, periostin was found to be strongly expressed by peritoneal fibroblasts.
CONCLUSION: Periostin is strongly expressed by fibroblasts and deposited in the peritoneal cavity of patients with EPS and with simple peritoneal fibrosis on PD. This protein might play a role in the progression of peritoneal injury, and low levels of periostin after prolonged time on PD might be a marker of EPS.

Citations

3 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nephrology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:13 Feb 2014 15:27
Last Modified:05 Apr 2016 17:40
Publisher:Multimed Inc.
ISSN:0896-8608
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3747/pdi.2010.00259
PubMed ID:23378472

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations