UZH-Logo

Maintenance Infos

Development of the nocturnal sleep electroencephalogram in human infants.


Jenni, O G; Borbely, A A; Achermann, P (2004). Development of the nocturnal sleep electroencephalogram in human infants. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 286(3):R528-R538.

Abstract

The development of nocturnal sleep and the sleep electroencephalogram (EEG) was investigated in a longitudinal study during infancy. All-night polysomnographic recordings were obtained at home at 2 wk and at 2, 4, 6, and 9 mo after birth (analysis of 7 infants). Total sleep time and the percentage of quiet sleep or non-rapid eye movement sleep (QS/NREMS) increased with age, whereas the percentage of active sleep or rapid eye movement sleep (AS/REMS) decreased. Spectral power of the sleep EEG was higher in QS/NREMS than in AS/REMS over a large part of the 0.75- to 25-Hz frequency range. In both QS/NREMS and AS/REMS, EEG power increased with age in the frequency range <10 Hz and >17 Hz. The largest rise occurred between 2 and 6 mo. A salient feature of the QS/NREMS spectrum was the emergence of a peak in the sigma band (12-14 Hz) at 2 mo that corresponded to the appearance of sleep spindles. Between 2 and 9 mo, low-frequency delta activity (0.75-1.75 Hz) showed an alternating pattern with a high level occurring in every other QS/NREMS episode. At 6 mo, sigma activity showed a similar pattern. In contrast, theta activity (6.5-9 Hz) exhibited a monotonic decline over consecutive QS/NREMS episodes, a trend that at 9 mo could be closely approximated by an exponential function. The results suggest that 1) EEG markers of sleep homeostasis appear in the first postnatal months, and 2) sleep homeostasis goes through a period of maturation. Theta activity and not delta activity seems to reflect the dissipation of sleep propensity during infancy.

The development of nocturnal sleep and the sleep electroencephalogram (EEG) was investigated in a longitudinal study during infancy. All-night polysomnographic recordings were obtained at home at 2 wk and at 2, 4, 6, and 9 mo after birth (analysis of 7 infants). Total sleep time and the percentage of quiet sleep or non-rapid eye movement sleep (QS/NREMS) increased with age, whereas the percentage of active sleep or rapid eye movement sleep (AS/REMS) decreased. Spectral power of the sleep EEG was higher in QS/NREMS than in AS/REMS over a large part of the 0.75- to 25-Hz frequency range. In both QS/NREMS and AS/REMS, EEG power increased with age in the frequency range <10 Hz and >17 Hz. The largest rise occurred between 2 and 6 mo. A salient feature of the QS/NREMS spectrum was the emergence of a peak in the sigma band (12-14 Hz) at 2 mo that corresponded to the appearance of sleep spindles. Between 2 and 9 mo, low-frequency delta activity (0.75-1.75 Hz) showed an alternating pattern with a high level occurring in every other QS/NREMS episode. At 6 mo, sigma activity showed a similar pattern. In contrast, theta activity (6.5-9 Hz) exhibited a monotonic decline over consecutive QS/NREMS episodes, a trend that at 9 mo could be closely approximated by an exponential function. The results suggest that 1) EEG markers of sleep homeostasis appear in the first postnatal months, and 2) sleep homeostasis goes through a period of maturation. Theta activity and not delta activity seems to reflect the dissipation of sleep propensity during infancy.

Citations

46 citations in Web of Science®
66 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 March 2004
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:American Physiological Society
ISSN:0363-6119
Publisher DOI:10.1152/ajpregu.00503.2003
PubMed ID:14630625

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations