UZH-Logo

Maintenance Infos

Toward a theory of embodied statistical learning


Burfoot, D; Lungarella, M; Kuniyoshi, Y (2008). Toward a theory of embodied statistical learning. In: 10th International Conference on Simulation of Adaptive Behavior, Osaka, Japan, 7 July 2008 - 12 July 2008, 270-278.

Abstract

The purpose of this paper is to outline a new formulation of statistical learning that will be more useful and relevant to the field of robotics. The primary motivation for this new perspective is the mismatch between the form of data assumed by current statistical learning algorithms, and the form of data that is actually generated by robotic systems. Specifically, robotic systems generate a vast unlabeled data stream, while most current algorithms are designed to handle limited numbers of discrete, labeled, independent and identically distributed samples. We argue that there is only one meaningful unsupervised learning process that can be applied to a vast data stream: adaptive compression. The compression rate can be used to compare different techniques, and statistical models obtained through adaptive compression should also be useful for other tasks.

The purpose of this paper is to outline a new formulation of statistical learning that will be more useful and relevant to the field of robotics. The primary motivation for this new perspective is the mismatch between the form of data assumed by current statistical learning algorithms, and the form of data that is actually generated by robotic systems. Specifically, robotic systems generate a vast unlabeled data stream, while most current algorithms are designed to handle limited numbers of discrete, labeled, independent and identically distributed samples. We argue that there is only one meaningful unsupervised learning process that can be applied to a vast data stream: adaptive compression. The compression rate can be used to compare different techniques, and statistical models obtained through adaptive compression should also be useful for other tasks.

Citations

5 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:12 July 2008
Deposited On:05 Jan 2009 10:32
Last Modified:05 Apr 2016 12:47
Publisher:Springer
Series Name:Lecture Notes in Computer Science
Number:5040
ISBN:978-3-540-69133-4
Additional Information:The paper is published in Proceedings of the 10th International Conference on Simulation of Adaptive Behavior (SAB 2008), Osaka, Japan, July 7-12, 2008.
Publisher DOI:10.1007/978-3-540-69134-1_27

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations