Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-944

Schweizer, L; Nellen, D; Basler, K (2003). Requirement for Pangolin/dTCF in Drosophila Wingless signaling. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 100(10):5846-5851.

View at publisher


The Wingless (Wg) protein is a secreted glycoprotein involved in intercellular signaling. On activation of the Wg signaling pathway, Armadillo is stabilized, causing target genes to be activated by the transcription factor Pangolin (Pan). This study investigated the roles of Pan in the developing wing of Drosophila by clonal analysis. Three different aspects of wing development were examined: cell proliferation, wing margin specification, and wg self-refinement. Our results indicate that Pan function is critically required for all three of these processes. Consequently, lack of pan causes a severe reduction in the activity of the Wg target genes Distalless and vestigial within their normal domain of expression. Loss of pan function does not, however, lead to a derepression of these genes outside this domain. Thus, although Pan is positively required for the induction of Wg targets in the wing imaginal disk, it does not appear to play a default repressor function in the absence of Wg input. In contrast, lack of zygotic pan function causes a milder phenotype than that caused by the lack of wg function in the embryo. We show that this difference cannot be attributed to maternally provided pan product, indicating that a Pan repressor function usually prevents the expression of embryonic Wg targets. Together, our results suggest that for embryonic patterning the activator as well as repressor forms of Pan play important roles, while for wing development Pan operates primarily in the activator mode.


26 citations in Web of Science®
26 citations in Scopus®
Google Scholar™



72 downloads since deposited on 11 Feb 2008
23 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Date:13 May 2003
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:National Academy of Sciences
Publisher DOI:10.1073/pnas.1037533100
PubMed ID:12730381

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page