UZH-Logo

Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity.


Degtyareva, N P; Greenwell, P; Hofmann, E R; Hengartner, M O; Zhang, L; Culotti, J G; Petes, T D (2002). Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(4):2158-2163.

Abstract

Mismatch repair genes are important in maintaining the fidelity of DNA replication. To determine the function of the Caenorhabditis elegans homologue of the MSH2 mismatch repair gene (msh-2), we isolated a strain of C. elegans with an insertion of the transposable element Tc1 within msh-2. Early-passage msh-2 mutants were similar to wild-type worms with regard to lifespan and meiotic chromosome segregation but had slightly reduced fertility. The mutant worms had reduced DNA damage-induced germ-line apoptosis after genotoxic stress. The msh-2 mutants also had elevated levels of microsatellite instability and increased rates of reversion of the dominant unc-58(e665) mutation. In addition, serially passaged cultures of msh-2 worms died out much more quickly than those of wild-type worms. These results demonstrate that msh-2 function in C. elegans is important in regulating both short- and long-term genomic stability.

Mismatch repair genes are important in maintaining the fidelity of DNA replication. To determine the function of the Caenorhabditis elegans homologue of the MSH2 mismatch repair gene (msh-2), we isolated a strain of C. elegans with an insertion of the transposable element Tc1 within msh-2. Early-passage msh-2 mutants were similar to wild-type worms with regard to lifespan and meiotic chromosome segregation but had slightly reduced fertility. The mutant worms had reduced DNA damage-induced germ-line apoptosis after genotoxic stress. The msh-2 mutants also had elevated levels of microsatellite instability and increased rates of reversion of the dominant unc-58(e665) mutation. In addition, serially passaged cultures of msh-2 worms died out much more quickly than those of wild-type worms. These results demonstrate that msh-2 function in C. elegans is important in regulating both short- and long-term genomic stability.

Citations

40 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

91 downloads since deposited on 11 Feb 2008
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:19 February 2002
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:National Academy of Sciences
ISSN:0027-8424
Publisher DOI:10.1073/pnas.032671599
PubMed ID:11830642
Permanent URL: http://doi.org/10.5167/uzh-947

Download

[img]
Preview
Filetype: PDF
Size: 241kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations