UZH-Logo

Maintenance Infos

Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice


Myakala, Komuraiah; Motta, Sarah; Murer, Heini; Wagner, Carsten A; Koesters, Robert; Biber, Jürg; Hernando, Nati (2014). Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. American Journal of Physiology. Renal, Fluid and Electrolyte Physiology, 306(8):F833-43.

Abstract

The proximal renal epithelia express three different Na-dependent inorganic phosphate (Pi) cotransporters: NaPi-IIa/SLC34A1, NaPi-IIc/SLC34A3, and PiT2/SLC20A2. Constitutive mouse knockout models of NaPi-IIa and NaPi-IIc suggested that NaPi-IIa mediates the bulk of renal reabsorption of Pi whereas the contribution of NaPi-IIc to this process is minor and probably restricted to young mice. However, many reports indicate that mutations of NaPi-IIc in humans lead to hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report the generation of a kidney-specific and inducible NaPi-IIc-deficient mouse model based on the loxP-Cre system. We found that the specific removal of the cotransporter from the kidneys of young mice does not impair the capacity of the renal epithelia to transport Pi. Moreover, the levels of Pi in plasma and urine as well as the circulating levels of parathyroid hormone, FGF-23, and vitamin D3 remained unchanged. These findings are in agreement with the data obtained with the constitutive knockout model and suggest that, under steady-state conditions of normal dietary Pi, NaPi-IIc is not an essential Na-Pi cotransporter in murine kidneys. However, and unlike the constitutive mutants, the kidney-specific depletion of NaPi-IIc does not result in alteration of the homeostasis of calcium. This suggests that the calcium-related phenotype observed in constitutive knockout mice may not be related to inactivation of the cotransporter in kidney.

Abstract

The proximal renal epithelia express three different Na-dependent inorganic phosphate (Pi) cotransporters: NaPi-IIa/SLC34A1, NaPi-IIc/SLC34A3, and PiT2/SLC20A2. Constitutive mouse knockout models of NaPi-IIa and NaPi-IIc suggested that NaPi-IIa mediates the bulk of renal reabsorption of Pi whereas the contribution of NaPi-IIc to this process is minor and probably restricted to young mice. However, many reports indicate that mutations of NaPi-IIc in humans lead to hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report the generation of a kidney-specific and inducible NaPi-IIc-deficient mouse model based on the loxP-Cre system. We found that the specific removal of the cotransporter from the kidneys of young mice does not impair the capacity of the renal epithelia to transport Pi. Moreover, the levels of Pi in plasma and urine as well as the circulating levels of parathyroid hormone, FGF-23, and vitamin D3 remained unchanged. These findings are in agreement with the data obtained with the constitutive knockout model and suggest that, under steady-state conditions of normal dietary Pi, NaPi-IIc is not an essential Na-Pi cotransporter in murine kidneys. However, and unlike the constitutive mutants, the kidney-specific depletion of NaPi-IIc does not result in alteration of the homeostasis of calcium. This suggests that the calcium-related phenotype observed in constitutive knockout mice may not be related to inactivation of the cotransporter in kidney.

Citations

11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 14 May 2014
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:14 May 2014 09:19
Last Modified:05 Apr 2016 17:50
Publisher:American Physiological Society
ISSN:1522-1466
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1152/ajprenal.00133.2013
PubMed ID:24553430

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations