UZH-Logo

Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient.


Müller, B; Hartmann, B; Pyrowolakis, G; Affolter, M; Basler, K (2003). Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient. Cell, 113(2):221-233.

Abstract

Morphogen gradients control body pattern by differentially regulating cellular behavior. Here, we analyze the molecular events underlying the primary response to the Dpp/BMP morphogen in Drosophila. Throughout development, Dpp transduction causes the graded transcriptional downregulation of the brinker (brk) gene. We first provide significance for the brk expression gradient by showing that different Brk levels repress distinct combinations of wing genes expressed at different distances from Dpp-secreting cells. We then dissect the brk regulatory region and identify two separable elements with opposite properties, a constitutive enhancer and a Dpp morphogen-regulated silencer. Furthermore, we present genetic and biochemical evidence that the brk silencer serves as a direct target for a protein complex consisting of the Smad homologs Mad/Medea and the zinc finger protein Schnurri. Together, our results provide the molecular framework for a mechanism by which the extracellular Dpp/BMP morphogen establishes a finely tuned, graded read-out of transcriptional repression.

Morphogen gradients control body pattern by differentially regulating cellular behavior. Here, we analyze the molecular events underlying the primary response to the Dpp/BMP morphogen in Drosophila. Throughout development, Dpp transduction causes the graded transcriptional downregulation of the brinker (brk) gene. We first provide significance for the brk expression gradient by showing that different Brk levels repress distinct combinations of wing genes expressed at different distances from Dpp-secreting cells. We then dissect the brk regulatory region and identify two separable elements with opposite properties, a constitutive enhancer and a Dpp morphogen-regulated silencer. Furthermore, we present genetic and biochemical evidence that the brk silencer serves as a direct target for a protein complex consisting of the Smad homologs Mad/Medea and the zinc finger protein Schnurri. Together, our results provide the molecular framework for a mechanism by which the extracellular Dpp/BMP morphogen establishes a finely tuned, graded read-out of transcriptional repression.

Citations

120 citations in Web of Science®
118 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

92 downloads since deposited on 11 Feb 2008
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:18 April 2003
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:Elsevier
ISSN:0092-8674
Publisher DOI:10.1016/S0092-8674(03)00241-1
PubMed ID:12705870
Permanent URL: http://doi.org/10.5167/uzh-955

Download

[img]
Preview
Filetype: PDF
Size: 817kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations