The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN- receptor

Papadopoulou, Aikaterini S; Dooley, James; Linterman, Michelle A; Pierson, Wim; Ucar, Olga; Kyewski, Bruno; Zuklys, Saulius; Hollander, Georg A; Matthys, Patrick; Gray, Daniel H D; De Strooper, Bart; Liston, Adrian

Abstract: Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon- (IFN-) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN- receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.

DOI: https://doi.org/10.1038/ni.2193

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-95652

Originally published at:
Papadopoulou, Aikaterini S; Dooley, James; Linterman, Michelle A; Pierson, Wim; Ucar, Olga; Kyewski, Bruno; Zuklys, Saulius; Hollander, Georg A; Matthys, Patrick; Gray, Daniel H D; De Strooper, Bart; Liston, Adrian (2011). The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN- receptor. Nature Immunology, 13(2):181-187.
DOI: https://doi.org/10.1038/ni.2193
The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor

Aikaterini S Papadopoulou¹,²,９, James Dooley¹,³,９, Michelle A Linterman⁴, Wim Pierson¹,³, Olga Ucar⁵, Bruno Kyewski³, Saulius Zuklys⁶, Georg A Hollander⁶, Patrick Matthys⁷, Daniel H D Gray⁸, Bart De Strooper¹,² & Adrian Liston¹,³

Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon-α (IFN-α) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN-α receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.

Unique among mammalian leukocytes, T cells require a dedicated organ, the thymus, for differentiation. Postnatal thymic output is critical for both effector T cell–mediated immunity¹ and regulatory T cell–mediated tolerance². However, there are circumstances (periodic infection and aging) that drive the process of severe atrophy known as ‘thymic involution’, which can result in the loss of more than 95% of the cellularity of the thymus. Continued thymic output during such events may be detrimental. The theoretical risk posed by continued thymic function during an infection is that foreign antigens present in the thymus will engender dominant tolerance, protecting the infection from clearance³. Thus, thymic involution during infection is a rapid yet transient phenomenon, with recovery within 1–2 weeks⁴. Thymic involution during aging has also been postulated to have biological functions, from acting as a protective mechanism against autoimmunity⁵ to allowing optimization of the peripheral repertoire⁶ or simply conserving energy by diminishing the inefficient process of T cell differentiation during the decreasing cost-benefit ratio of old age. The kinetics of thymic involution during aging are distinct from those of infection-induced thymic involution, with a gradual progressive decrease in cellularity, at the rate of roughly 1% per year in humans⁷.

Characterization of the direct mediators of thymic involution has identified two distinct pathways for this process. The rapid and transient involution initiated during infection can be reproduced by exposure to pathogen-associated molecular patterns (PAMPs) such as poly(I-C)⁴. In this system, thymic involution is dependent on the viral sensor Mda5 and is mediated by the IFNAR1 receptor for interferon-α (IFN-α) expressed on the thymic stroma⁴. Age-related thymic involution, in contrast, is mediated by the sensitivity of thymic epithelial cells to sex hormones⁸ and can be reversed by physical or chemical ablation of sex hormones⁹. Other inducers of thymic involution are known, ranging from psychological stress to inflammation¹⁰,¹¹; however, these phenomena may instead reflect a maladaptive response to noninfectious conditions that mimic signals of infection at the molecular level.

Although the main molecular mediators of infection-induced thymic involution have been identified, the mechanism by which appropriate sensitivity is maintained remains unknown. The thymus has conflicting pressures to ensure rapid involution during a high-risk infection without undergoing chronic involution due to baseline exposure to PAMPs. One potential regulatory system that would be well adapted to tuning involution sensitivity is the microRNA (miRNA) network. MicroRNAs are small, noncoding RNAs that modulate the production of protein from mRNA through destabilization of the mRNA and inhibition of translation. In monocytes and dendritic cells, miRNA can tightly regulate the signaling resulting from exposure to PAMPs. The miRNA miR-155 is a positive regulator of Toll-like receptor signaling and downregulates the signaling inhibitor SOCS1 and inositol polyphosphate phosphatase SHIP-1 to enhance Toll-like

¹VIB, Leuven, Belgium. ²Center for Human Genetics, University of Leuven, Leuven, Belgium. ³Autoimmune Genetics Laboratory, University of Leuven, Leuven, Belgium. ⁴Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, UK. ⁵Developmental Immunology, German Cancer Research Center, Heidelberg, Germany. ⁶Pediatric Immunology, University of Basel, Basel, Switzerland. ⁷Laboratory of Immunobiology, Rega Institute, University of Leuven, Leuven, Belgium. ⁸Molecular Genetics of Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. °These authors contributed equally to this work. Correspondence should be addressed to A.L. (adrian.liston@vib.be) or J.D. (james.dooley@vib-kuleuven.be).

Received 5 October; accepted 21 November; published online 18 December 2011; doi:10.1038/ni.2193
receptor signaling. The miRNAs miR-146a, miR-147, miR-125b, miR-21 and let-7e, in contrast, are all negative regulators of Toll-like receptor signaling and diminish the sensitivity of cells to PAMPs. These miRNAs have a complex regulatory system, with both ligand-dependent enhancement and suppression. As well as modulating the Toll-like receptor signaling pathway, miRNA-146 is also involved in the RNA helicase RIG-I antiviral pathway, diminishing the amount of the ubiquitin ligase TRAF6 and the kinases IRAK1 and IRAK2 and hence modulating IFN-α production. Therefore, miRNAs are putative regulators of PAMP signaling in thymic epithelium.

To assess the function of miRNA regulation in thymic function and involution, we generated mice with thymic epithelial cell–specific deletion of Dicer, the key miRNA-biogenesis protein. We found that thymic epithelial cells were exquisitely sensitive to loss of the miRNA network, as excision of Dicer drove progressive degeneration of thymic architecture and function, altering T cell differentiation and peripheral tolerance. In addition to the disruption of thymic architecture, Dicer-deficient thymic epithelium became hypersensitive to molecular involution signals, which allowed constitutive or suboptimal amounts of pathogen-related signals to drive premature and chronic thymic involution. This heightened sensitivity was replicated in mice deficient in the miR-29a cluster (miR-29a–miR-29b-1) and was associated with loss of miR-29a-dependent regulation of IFNAR1. Loss of the miR-29a cluster resulted in IFNAR1-dependent hypersensitivity to pathogen-related signals and hyperactivity of the IFNAR1 signaling pathway. These results indicate that the miRNA network, and miR-29a in particular, is the key threshold modulator of the thymic epithelial cell response to peripheral PAMP signals.

RESULTS
Thymic architecture maintained by miRNA
To determine the function of the miRNA network in thymic epithelial cells, we used mice with a Foxn1 locus (which encodes a highly specialized regulator of thymic epithelial cell differentiation) containing sequence encoding Cre recombinase knocked into its 3′ untranslated region (Foxn1Cre), which produces Cre with high specific activity in thymic epithelial cell precursors, crossed to mice withloxP-flanked alleles of Dicer (Dicerfl/fl, called ‘Dicerfl/fl here). Histological examination of epithelial architecture in the thymus of Foxn1CreDicerfl/fl mice demonstrated a progressive disruption of thymic architecture. Dicer-sufficient siblings (Foxn1fl/+Dicerfl/fl mice; called ‘wild-type mice’ here) typically had an even distribution of keratin 8–positive epithelial cells in the cortex and keratin 14–positive epithelial cells in the medulla, with relatively few changes in structure during development, beyond expansion of the medulla during the first weeks after birth (Fig. 1a). Foxn1CreDicerfl/fl mice developed normal thymic architecture, with the presence of a discrete cortex and medulla at birth (Fig. 1a). By 1 week of age, however, disorganization of thymic structure became apparent, with the loss of homogeneity in keratin 14 expression and the appearance of regions lacking keratin 14 expression in the medulla (Fig. 1a). Those keratin 14–negative zones also lacked expression of other epithelial markers (Supplementary Fig. 1), which suggested the presence of epithelial voids in the medulla. By 3 weeks of age, large epithelial voids had also opened up in the cortex and the medullary epithelium was almost absent. These architectural changes were not present in Foxn1CreDicer+/+ mice (Supplementary Fig. 2) and were thus due to thymic epithelial cell–specific excision of Dicer rather than any cytotoxicity effect of Cre. The heightened sensitivity of medullary epithelium to architectural degradation was reflected in the cellular composition of the epithelial compartment, as measured by flow cytometry (Fig. 1b), whereby the fraction of medullary epithelium was much lower than that of the cortical epithelium in Dicer-deficient mice; this created a bias of ~25:1 in the ratio of recoverable cortical epithelium to medullary epithelium in Foxn1CreDicerfl/fl mice, compared with the normal ratio of ~1:1 in wild-type mice (Fig. 1c).

The progressive loss of epithelium from the thymus in Foxn1CreDicerfl/fl mice suggested a role for the miRNA network in preventing apoptosis of epithelial cells, with medullary epithelium showing heightened sensitivity to miRNA loss. In direct support of a model of the generation of epithelial voids by more apoptosis, containing of keratin 8 and activated caspase-3 demonstrated the presence of apoptotic epithelial cells along the boundary of the epithelial voids in Dicer-deficient mice only (Fig. 2a). By staining for activated caspase-3, we found significantly more apoptotic epithelial cells along the boundary of the epithelial voids in Dicer-deficient mice only (Fig. 2a). By staining for activated caspase-3, we found significantly more apoptotic epithelial cells along the boundary of the epithelial voids in Dicer-deficient mice only (Fig. 2a).

Figure 1 Loss of miRNA in the thymic epithelium results in progressive loss of thymic architecture. (a) Immunofluorescence staining of thymi from Foxn1CreDicerfl/fl mice and their wild-type (WT) siblings assessed at birth (Neonate) and at 1, 4 and 12 weeks of age: red, keratin 8 (cortex); green, keratin 14 (medulla); blue, DNA-intercalating dye DAPI (nuclei). Arrows indicate epithelial voids. Scale bars, 100 μm. (b) Frequency of cortical epithelium (ctx; BP-1–UEA−) and medullary epithelium (med; BP-1–UEA+) in thymi from 12-week-old wild-type and Foxn1CreDicerfl/fl mice, measured by flow cytometry and gated on CD45–G8.8+ epithelium. Numbers in outlined areas indicate percent UEA/BP-1− cells (top left) or UEA–BP-1+ cells (bottom right). (c) Proportion of cortical and medullary epithelium (left) and cortical/medullary ratio (C/M; right) in wild-type mice (n = 5) and Foxn1CreDicerfl/fl mice (n = 6), analyzed as in b. *P < 0.001 (t-test). Data are representative of five experiments (a, b) or are pooled from five experiments (c; average and s.d.).
abundant, with more clusters positive for keratin 5 and keratin 8 and more epithelium positive for the marker p63 (Supplementary Fig. 4). The greater proliferation may have been in direct response to the higher rate of apoptosis, with a higher percentage of epithelial cells expressing the proliferation marker Ki67 (Supplementary Fig. 4). The higher abundance of CD4+ thymocytes from wild-type and Foxn1^{fl/fl} mice and their wild-type siblings. Green, keratin 8 (left); red, active caspase-3 (center); yellow, overlay (right). Arrows indicate apoptotic epithelial cells. Scale bars, 50 μm. (b,c)

Proportion of apoptotic cells (cells with activate caspase-3 (Casp3)) and frequency of proliferating cells (Ki67⁺) in the cortical (BP-1[−]UEA[−]) and medullary (BP-1[−]UEA⁺) epithelium of 12-week-old wild-type mice (n = 4) and their Foxn1^{fl/fl} siblings (n = 5), assessed by flow cytometry in b. (c) *P < 0.05 and **P < 0.001 (t-test). Data are representative of five experiments (a) or are pooled from five experiments (b,c; average and s.d.).

Given the progressive disintegration of the thymic architecture in the absence of Dicer, we assessed whether miRNA contributed to the ability of the epithelium to support thymocyte differentiation. Despite the large changes in architecture, T cell differentiation remained notably robust. Early T cell differentiation through rearrangement of the T cell antigen receptor and thymic differentiation cannot be excluded.

The frequent distribution of F4/80⁺ macrophages along the boundary of the epithelial voids (Supplementary Fig. 7) further supported a model of enhanced epithelial cell death in the region. An unusual feature common to the epithelial voids was the presence of dense foci of CD19⁺ B cells, which resulted in an expansion in the total number of B cells in the thymus (Fig. 3d,e). These B cells may have represented aberrant migration into the thymus or autochthonous production from thymocyte precursors in the absence of epithelial signals. Overall, these results suggested that the Dicer-deficient mice simultaneously demonstrating a greater susceptibility to collagen-induced arthritis and a lower severity of disease (Supplementary Fig. 6c–e and Supplementary Table 2).

As the phenomena noted above could have been due to fewer interactions with the epithelium, we investigated the cellular composition of the epithelial voids further. Although epithelial voids showed an absence of thymic epithelium, they were not acellular but had thymocytic and T cell interactions with the epithelium. We investigated the cellular composition of the epithelial voids further.

Figure 2 Enhanced apoptosis of the medullary thymic epithelium in the absence of miRNA. (a) Immunofluorescence staining of thymi from 12-week-old Foxn1<sup>Cre⁺Dicer^{r^r} mice and their wild-type siblings. Green, keratin 8 (left); red, active caspase-3 (center); yellow, overlay (right). Arrows indicate apoptotic epithelial cells. Scale bars, 50 μm. (b,c)

Proportion of apoptotic cells (cells with activate caspase-3 (Casp3)) and frequency of proliferating cells (Ki67⁺) in the cortical (BP-1[−]UEA[−]) and medullary (BP-1[−]UEA⁺) epithelium of 12-week-old wild-type mice (n = 4) and their Foxn1<sup>Cre⁺Dicer^{r^r} mice and their wild-type siblings. Green, keratin 8 (left); red, active caspase-3 (center); yellow, overlay (right). Arrows indicate apoptotic epithelial cells. Scale bars, 50 μm. (b,c)

Figure 3 Progressive decay in thymocyte differentiation associated with the presence of epithelial voids in Dicer-deficient mice. (a) Flow cytometry of thymocytes from wild-type and Foxn1<sup>Cre⁺Dicer^{r^r} thymi. Numbers in outlined areas indicate percent CD4⁺CD8⁺ (single-positive) cells. (b) Frequency of CD4⁺ single-positive (CD4SP) thymocytes in mice analyzed as in a (n = 2–5 mice per group). (c,d) Immunofluorescence staining of thymi from 4-week-old Foxn1<sup>Cre⁺Dicer^{r^r} mice and their wild-type siblings: red, keratin 14 (c,d); green, CD4 (c) or CD19 (d); blue, DAPI (d). In d, 62% of epithelial voids (n = 53) have CD19 foci. Scale bars, 100 μm. (e) Frequency of B cells in thymi from wild-type (Foxn1^{fl/fl}) and Foxn1<sup>Cre⁺Dicer^{r^r} mice (n = 2–5 per group), assessed by flow cytometry. *P < 0.05 (t-test). Data are representative of five (a) or three (c,d) experiments or are pooled from five experiments (b,e; average and s.d.).
neonatal thymus had preserved function, but that progressive defects in thymocyte differentiation and selection processes developed in line with the altered architecture.

miRNAs prevent pathogen-associated thymic involution

Coincident with the thymic architectural changes, Dicer deficiency in the thymic epithelium caused premature thymic involution. Although thymus size in Foxn1^{Cre}Dicer^{fl/fl} mice was normal at birth and the thymus grew to nearly normal sizes by 4 weeks of age, after that age it began to rapidly involute, dropping by 90% at 12 weeks (Fig. 4a).

To determine if miRNA protects against thymic involution by modulating the sensitivity of the thymic epithelium to sex hormones, we surgically castrated Foxn1^{Cre}Dicer^{fl/fl} mice and their wild-type siblings at 7 weeks of age. Although castrated wild-type and Dicer-deficient mice demonstrated a gain in thymic cellularity at 12 weeks (Fig. 4b), the difference between the two conditions was not eliminated, which indicated that the loss of thymic epithelial miRNA did not affect sensitivity to a sex-hormone signal.

The second main pathway involved in thymic involution is the IFN-α-mediated pathway. By a ‘bioinformatics discovery’ approach, IFNAR1 was the only component of the IFN-α signaling pathway with higher expression in Dicer-deficient thymic epithelium (S.Z. and G.A.H., data not shown). To determine if miRNA regulates sensitivity of thymic epithelial cells to IFN-α signaling, we purified cortical thymic epithelium (BP-1’UEA[−]) and medullary thymic epithelium (BP-1’UEA⁺) from wild-type and Dicer-deficient mice. In the thymus of Dicer-deficient mice, Ifnar1 mRNA was upregulated about tenfold in the cortex and about fivefold in the medulla, relative to Ifnar1 mRNA expression in the same cell populations from wild-type mice (Fig. 4c). IFNAR1 expression on the thymic stroma is critical for poly(I:C)-mediated thymic involution⁴, which suggests that Dicer deficiency may drive inappropriate thymic involution through enhanced sensitivity of thymic epithelial cells to PAMP signals.

To directly test that hypothesis, we ‘titrated’ poly(I:C) exposure in wild-type mice to determine the concentration of poly(I:C) unable to induce thymic involution. Doses of 250 µg per mouse and above induced thymic involution, whereas doses of 200 µg per mouse and below were unable to drive involution in wild-type mice (Fig. 4d). Dicer-deficient mice, unlike wild-type mice, were hypersensitive to a low dose of poly(I:C) and underwent rapid thymic involution when exposed to suboptimal doses of poly(I:C) (Fig. 4e). These data demonstrated that the thymic epithelial miRNA network was important for protecting the thymus from inappropriate involution at low concentrations of PAMPs.

The miR-29a cluster controls thymic involution

A likely miRNA candidate for hypersensitivity to PAMP-mediated thymic involution was miR-29a. Among the miRNAs expressed in the thymic epithelium (S.Z. and G.A.H., data not shown), miR-29a was the miRNA with the highest expression predicted to have multiple interactions with Ifnar1 mRNA (ref. 22). To determine whether miR-29a targeted Ifnar1 as predicted, we cloned the 3′ untranslated region of Ifnar1 into the 3′ region of a luciferase reporter gene. The addition of a miR-29a mimic to HeLa-M human cervical cancer cells resulted in the destabilization of mRNA containing the Ifnar1 3′ UTR region, but the addition of a mimic with scrambled sequence did not (Fig. 5a), which demonstrated the specific ability of miR-29a to destabilize mRNA containing that region. Because of the potential redundancy in function of miR-29a, miR-29b, and miR-29c, we assessed the expression of all three miRNAs by in situ hybridization. In the brain, all three miRNAs had high expression (Fig. 5b); however, in the thymus, we detected only miR-29a in substantial amounts (Fig. 5b). The detection of only miR-29a and not miR-29b in the thymus, despite cotranscription from the bicistronic miR-29a cluster, suggested independent regulation of expression, a feature described before for the miR-29a locus, with a 3′ hexanucleotide sequence in miR-29b driving nuclear localization and accelerated turnover during the nonmitotic portions of the cell cycle²³. The in situ data indicating lower expression of miR-29b than miR-29a in thymic epithelial cells was supported by microarray analysis, whereby miR-29a expression was high in the cortex and medulla but miR-29b expression was low to undetectable (S.Z. and G.A.H., data not shown), and by quantitative PCR analysis, whereby miR-29a expression was high but miR-29b expression was undetectable in half the samples and very low in others (Supplementary Fig. 8).

To assess the function of miR-29a in the thymus, we generated mice with targeted deletion of the miR-29a–miR-29b-1 locus (called ‘miR-29a-deficient mice’ here). We removed a region of about 1.7 kilobases spanning the entire miR-29a–miR-29b-1 cluster precursor sequence by homologous recombination (Supplementary Fig. 9a) and confirmed the loss of miR-29a–miR-29b-1 by Southern blot analysis (Supplementary Fig. 9b).

Figure 4 Thymic epithelial defects in the miRNA network result in hypersensitivity to IFN-α and premature thymic involution. (a) Thymic cellularity of wild-type and Foxn1^{Cre}Dicer^{fl/fl} mice (n = 3–17 per group) assessed at birth and 1, 4, and 12 weeks of age. (b) Thymic cellularity in wild-type and Foxn1^{Cre}Dicer^{fl/fl} mice (n = 3–7 per group) left intact (−) or surgically castrated (+) at 7 weeks of age, assessed at 12 weeks. (c) Ifnar1 mRNA expression in cortical (BP-1’UEA[−]) and medullary (BP-1’UEA⁺) thymic epithelium from 6- to 8-week-old wild-type mice (n = 5) and Foxn1^{Cre}Dicer^{fl/fl} mice (n = 4), presented relative to values for wild-type cortex. (d) Thymic cellularity of wild-type mice injected with 0–300 µg poly(I:C) at 4 weeks of age (n = 3–8 per group). (e) Thymic cellularity of wild-type and Foxn1^{Cre}Dicer^{fl/fl} mice (n = 3–5 per group) treated with saline or 150 µg poly(I:C) at 4 weeks of age. *P < 0.05 and **P < 0.0001 (t-test); NS, nonsignificant. Data are pooled from five experiments (a), one experiment (b) or three experiments (c–e; error bars, s.d.).
Figure 5 *Ilnar1* is a direct target of miR-29a. (a) Luciferase expression in HeLa-M cells (n = 5 replicates per group) transfected with empty renilla luciferase reporter plasmid (EV) or plasmid containing the *Ilnar1* 3′ untranscribed region (*Ilnar1* 3′ UTR) and treated with the miR-29a mimic or a mimic with scrambled sequence (Scr), presented as relative luciferase units (RLU) relative to firefly luciferase. *P < 0.05 (t-test). (b) *In situ* hybridization of miR-29a, miR-29b and miR-29c in the brains of wild-type mice and thymi of wild-type or miR-29a-deficient mice (miR-29a-KO): green, miRNA probe; blue, DAPI. Scale bars, 100 μm. Data are representative of three independent experiments (a; error bars, s.d.) or two experiments (b).

In *in situ* hybridization of miR-29a-deficient thymus demonstrated complete loss of miR-29a expression without substantial compensatory upregulation of miR-29b or miR-29c (Fig. 5b). Our initial characterization of these mice indicated no major developmental defects, showing birth at a normal Mendelian ratio and no noticeable abnormalities in major organs such as the brain (Supplementary Fig. 10 and Supplementary Table 3).

Analysis of miR-29a-deficient thymus demonstrated that the thymic architecture and thymic involution phenotypes of the Dicer-deficient mice segregated in the miR-29a-deficient mouse. Unlike *Foxn1*^{Cre-Dicer^{fl/fl}} mice, miR-29a-deficient mice demonstrated no major changes to thymic architecture, with normal development of the cortical and medullary thymic epithelial populations and no progressive decay or formation of epithelial voids (Fig. 6 and Supplementary Figs. 11 and 12). Likewise, thymic function seemed intact, with normal differentiation of thymocytes and peripheral T cells (Supplementary Fig. 13 and Supplementary Table 4). However, miR-29a-deficient mice did undergo premature thymic involution after 4 weeks of age (Fig. 6c) at a degree indistinguishable from that of *Foxn1*^{Cre-Dicer^{fl/fl}} mice (Supplementary Fig. 14a,b). As with *Foxn1*^{Cre-Dicer^{fl/fl}} mice, this premature involution was independent of the amount of sex hormones, as it was not reversed by chemical castration (Supplementary Fig. 14c). Unlike the loss of Dicer in *Foxn1*^{Cre-Dicer^{fl/fl}} mice, loss of miR-29a was not restricted to the thymic epithelium, which raised the possibility that the same phenotype was being generated through alterations in other anatomical compartments, such as T cell precursors in the bone marrow. We therefore used bone marrow chimeras and thymic transplants to test compartmentalization. Wild-type recipients of either miR-29a-deficient or wild-type bone marrow had thymi of normal size. In contrast, miR-29a-deficient recipients of either miR-29a-deficient or wild-type bone marrow had much smaller (90%) thymi (Fig. 6d). When we transplanted thymi from neonatal miR-29a-deficient mice or their wild-type siblings into wild-type hosts, wild-type thymi grafted well and grew in size, whereas miR-29a-deficient thymi involuted (Fig. 6e). These results conclusively demonstrated that the premature thymic involution observed in miR-29a-deficient mice was due to loss of miR-29a in the thymic epithelial compartment and was not secondary to changes occurring in other cell types.

The miR-29a cluster suppresses *Ilnar1*

To determine whether the inappropriate thymic involution in the miR-29a-deficient mouse was due to PAMP hypersensitivity, we measured *Ilnar1* mRNA in purified cortical and medullary epithelium in the preinvoluted thymus. As befitting a true direct target, *Ilnar1* expression was about eightfold higher in miR-29a-deficient epithelium than in wild-type epithelium (Fig. 7a), a scale similar to that observed in Dicer-deficient epithelium. The higher *Ilnar1* mRNA expression was greater in the medulla after thymic involution (Supplementary Fig. 15), suggestive of initiation of a positive feedback loop. To directly assess whether this heightened expression recapitulated the Dicer-deficiency phenotype of hypersensitivity to PAMP signals, we exposed wild-type and miR-29a-deficient mice to suboptimal amounts of poly(I:C). Unlike wild-type mice, but like Dicer-deficient mice, miR-29a-deficient mice were hypersensitive to a low dose of poly(I:C) and underwent rapid thymic involution (Fig. 7). This hypersensitivity was dependent on IFNAR1, as coinjection of antibody to IFNAR1 (anti-IFNAR1) restored ~60% of thymic cellularity, but coinjection of isotype-matched control antibody did not, in line with...
the neutralization capacity of ~60% for this antibody. The ability of miR-29a-deficient mice to recover from poly(I:C) seemed intact, with ~50% cellular recovery 10 d after treatment (Supplementary Fig. 16).

Even when not treated with a low dose of poly(I:C), by 12 weeks of age miR-29a-deficient mice had more phosphorylation of STAT1, the direct downstream target of IFNAR1, evidence that the greater abundance of Ifnar1 mRNA had a biologically relevant effect. Together these results demonstrated that loss of miR-29a in the thymic stroma resulted in premature thymic involution and hypersensitivity to pathogen-associated signals, indistinguishable from complete loss of the miRNA network in thymic epithelium.

DISCUSSION

The role of miRNA in the adaptive immune system has been investigated through systematic removal of the miRNA network in T cells, B cells, and key accessory cell lineages such as dendritic cells. Although many functions of the adaptive immune system seem to be independent of the miRNA network, several key aspects are under tight miRNA-mediated control, including stability of the regulatory T cell lineage, immunoglobulin repertoire generation, and PAMP responsiveness. One of the main accessory cell types in the adaptive immune system whose miRNA function has not yet been profiled is the thymic epithelial cell. Here we used conditional deletion of Dicer to show that loss of the miRNA network in thymic epithelial cells led to decay of the epithelial architecture, less thymocyte positive selection, an enhanced B cell presence, greater susceptibility to induced autoimmunity and inappropriate chronic thymic involution. This diverse array of phenotypes can be explained by the following two distinct cellular processes: first, an miR-29a-independent increase in epithelial cell apoptosis, which gives a parsimonious account for most of the phenotypes observed; and second, miR-29a-dependent sensitivity to thymic involution.

The root driver of the miR-29a-independent phenotypes was probably changes in thymic architecture. The progressive loss of thymic involution was the first phenotype to appear, chronologically, with epithelial void formation in the medulla remaining an open question, but it may reflect enhanced sensitivity to one of the models described above.

This diverse array of phenotypes can be explained as secondary effects resulting from the primary decay in thymic architecture. We did not observe the defects in positive selection and the greater B cell numbers in mice before 4 weeks of age, which suggested that these changes resulted not from abnormal regulation of key epithelial proteins but instead from the ‘anatomical traps’ formed by epithelial cell decay. Early thymocytes that enter the thymus and find themselves in the absence of expression of ligand for the receptor Notch by thymic epithelial cells may default into B cell differentiation. Likewise, double-positive thymocytes that migrate into epithelial cell voids would have less interaction with cortical epithelial cells, which would probably result in less positive selection. It is notable that the defect in positive selection is observed solely in the lineage trap model, as single-positive thymocytes in Dicer-deficient mice have very low exposure to medullary epithelium and Aire+ epithelial cells for efficient negative selection. The progressive decay observed here is probably not amenable to delineation to a single miRNA or mRNA target. Although individual miRNAs have been shown to induce apoptosis or suppress apoptosis, the observation of enhanced apoptosis in Dicer-deficient cell types of diverse origin suggests that this is an emergent feature of regulatory disruption of the whole-network deletion achieved by excision of Dicer.

In contrast, the most striking feature of the Dicer-deficient thymus, inappropriate chronic involution, can be accounted for by a single
miRNA-mRNA interaction. It is notable that both Dicer-deficient and miR-29a-deficient thymi developed to a normal size at birth and expanded during growth to 4 weeks before collapsing in size between 9 and 12 weeks of age. That observation indicates that the phenomenon was involution and not a failure in thymic growth. The inappropriate involution caused by loss of miR-29a expression can be explained by the loss of tight regulation of IFNAR1 expression. We demonstrated here that ifnar1 was a true target of miR-29a and that expression of IFNAR1 was upregulated in thymic epithelium after the loss of Dicer or miR-29a. Furthermore, IFNAR1 upregulation enhanced the sensitivity of the thymic epithelium to PAMP signals, driving thymic involution at suboptimal PAMP exposure. The spontaneous thymic involution in older miR-29a-deficient mice was accompanied by activation of STAT1, and thus greater sensitivity to baseline IFN-α is the parsimonious explanation for the observed chronic involution. In this model, miR-29a has a key role in the thymic epithelium in limiting IFNAR1 expression and hence diminishing the threshold at which thymic epithelial cells become triggered to undergo involution. In the absence of epithelial miRNA, baseline PAMP exposure is sufficient to trigger the chronic involution observed. In contrast, in the presence of epithelial miRNA, the thymus is buffered against small amounts of IFN-α, which permits involution to be triggered only after an adequate infectious trigger. The published observation that exposure to both IFN-α and PAMPs drives the downregulation of Dicer40 raises the possibility that positive feedback loops may be induced by pathogen exposure, whereby the amounts of IFN-α sufficient to drive Dicer downregulation result in upregulation of IFNAR1, initiating the involution cascade.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/natureimmunology/

ACKNOWLEDGMENTS

We thank A. Tarakhovsky (Rockefeller University) for Dicer−/− mice; N. Manley (University of Georgia) for Foxn1Cre+ mice; A. Farr (University of Washington) for hybridomas; S. Schonefeldt for mouse colony support and D. Anz for (University of Georgia) for T cell lineage choice and differentiation in the absence of the Rnase III enzyme Dicer. J. Exp. Med. 201, 1367–1373 (2005).

Online Methods

Mice. Foxn1^{−/−} mice⁴¹ were intercrossed with Dicer^{−/−} mice²¹ to produce mice on the C57BL/6 background with excision of Dicer specific to thymic epithelial cells. The miR-29a-deficient mice were generated as described below. Mice were chemically castrated at 4 months of age by intramuscular injection of 0.4 mg leuprolin acetate (Lupron), followed by analysis at 6 months of age. Mice were surgically castrated at 7 weeks of age and assessed at 12 weeks of age⁹. Bone marrow chimeras were generated by injection of bone marrow (1 <i>x</i> 10⁶ cells per recipient) treated with complement (Low-Tox M Rabbit Complement; Cedarlane) into irradiated host mice (9.5 Gy). Neonatal thymus was transplanted under the kidney capsule at 6 weeks of age under sterile conditions. High-molecular-weight poly(I:C) (Invivogen) was injected intraperitoneally on days 0 and 3, with cellularity measured on day 4. In neutralization experiments, 0.75 mg anti-IFNAR1 (MAR1-5A3; Biologie) or isotype-matched control antibody (GIR-208; Biologie) was injected intravenously on days 0 and 3 at 1 h before treatment with poly(I:C). Histology was done by Histology Consultation Services and pathology reports were generated by BioGenetics. Mice were housed under specific pathogen–free conditions and were used in accordance with the University of Leuven Animal Ethics Committee.

Generation of miR-29a-deficient mice. Bacterial artificial chromosome clone RPCI731.15459Q2 was used as the source for the 10.9-kilobase region surrounding the miR-29a–miR-29b-1 gene. A 1.7-kilobase region between the 5′ Ael site and the 3′ SalI site was deleted by the introduction of a gene encoding hygromycin resistance, and the linearized pBluescript II KSM vector was transfected by electroporation into ES cells. Embryonic stem cells that underwent homologous recombination events were identified by hygromycin selection and were screened by Southern blot analysis. Genomic DNA was digested with EcoRI, EcoRV, and NcoI and was hybridized to a genomic DNA external 5′ probe (PCR product with primers 5′-ACCTCGCATGACACGCTGACG-3′ (forward) and 5′-AAAGGGGTCTTAGCATCAG-3′ (reverse)) and 3′ probe (PCR product with primers 5′-CTAGAGCCAAAGATGCTGTGGTGT-3′ (forward) and 5′-CCCTGGAGGGTGTTAGAAGA-3′ (reverse)) by a hybridization protocol using BioGenetics. Embryonic stem cell clones were microinjected into C57BL/6 blastocyst embryos for the generation of chimeras. The chimeras were then backcrossed to C57BL/6 mice for more than seven generations. Mice deficient in miR-29a were genotyped by PCR with primers for the wild-type fragment (516 base pairs; 5′-CTTAATTCCTACGTGGCCTAACCG-5′ (forward) and 5′-GAACATTGCAAGGACTCCACCTCC-3′ (reverse)) and knockout band (717 base pairs; 5′-AAAGGTTCTAAAGAGCTCAC-3′ (forward) and 5′-CAGAAAGCCGAGGAGGAGCAGAAAG-3′ (reverse)).

Arthritis induction. Collagen-induced arthritis was induced by intradermal injection of chicken collagen type II (Sigma-Aldrich) in Freund's complete adjuvant, as described⁴². Clinical severity of disease was monitored for 40 d after induction with a published scoring system¹³. Susceptibility to arthritis was assessed as the incidence of arthritis at completion, with four independent groups (two male and two female) treated as paired values in a two-tailed test. Groups (two male and two female) treated as paired values in a two-tailed test. Therefore, groups were merged and differences in severity were assessed as the incidence of arthritis at completion, with four independent groups (two male and two female) treated as paired values in a two-tailed test.

Flow cytometry and immunofluorescence. Cells were analyzed with the following antibodies: fluorescein isothiocyanate–conjugated anti-CD69 (H1.2F3; eBioscience), anti-CD25 (IL-2Rα; p55; eBioscience), anti-Ifng (11/41; eBioscience) and Ulex Europeaus Agglutinin (Vector Labs), phycoerythrin-conjugated anti-CD8 (53.6.7); anti-CD19 (1D3) and anti-BP-1 (6C3; all from eBioscience); and Ulex Europaeus Agglutinin (Vector Laboratories). For immunofluorescence, the following detection antibodies were used: Alexa Fluor 594–goat anti-mouse (A-11005; Invitrogen), Alexa Fluor 488–donkey anti-rat (A21208; Molecular Probes), Alexa Fluor 488–donkey anti-rabbit (A21206; Molecular Probes), Alexa Fluor 546–donkey anti-goat (A10156; Molecular Probes), Alexa Fluor 556–donkey anti-galactosyltransferase (A21219; Molecular Probes), Alexa Fluor 488–chicken anti-rat (A21472; Molecular Probes), streptavidin–Alexa Fluor 488 (S12354; Molecular Probes) and streptavidin–Alexa Fluor 546 (S11225; Molecular Probes). Images were acquired with an LSM 510 Meta confocal microscope (Zeiss).

Luciferase assay. The Ifnar1^{3UTR} untranslated region was amplified from genomic DNA, inserted into the PsiCheck2 renilla luciferase reporter plasmid (Promega) and confirmed by sequencing. For reporter assays, HeLa-M cells were cotransfected in triplicate through the use of Lipofectamine 2000 (Invitrogen) with empty PsiCheck2 or PsiCheck2 containing the Ifnar1^{3UTR} in conjunction with either mouse miR-29a mimic or a mimic control with scrambled sequence (Dharmacon) at a final concentration of 40 nM. Firefly luciferase was used as a normalization control. Reporter activity was detected 24 h after transfection with the Dual-Glo Luciferase Assay System (Promega).

Thymic epithelial expression analysis. Thymic stroma preparations were enriched from three to six pooled thymi⁴⁴. Cells were stained with fluoresein isothiocyanate–conjugated Ulex Europeaus Agglutinin (Vector Labs), phycoerythrin-conjugated anti-BP-1 (6C3; eBioscience), peridinin chlorophyll protein–cyanine 5.5–conjugated anti–I-<i>A</i>–I-<i>E</i> (M5/114; Biologie), allopucyoxyycin–conjugated anti-CD45 (104; eBioscience) and phycoerythrin-indoctricarboylane-conjugated anti-Epcam (G8.8; Biologie) and were stained with fluorescein isothiocyanate Ulex Europaeus Agglutinin (Vector Laboratories). For immunofluorescence, the following detection antibodies were used: Alexa Fluor 594–goat anti-mouse (A-11005; Invitrogen), Alexa Fluor 488–donkey anti-rat (A21208; Molecular Probes), Alexa Fluor 488–donkey anti-rabbit (A21206; Molecular Probes), Alexa Fluor 546–donkey anti-goat (A10156; Molecular Probes), Alexa Fluor 556–donkey anti-galactosyltransferase (A21219; Molecular Probes), Alexa Fluor 488–chicken anti-rat (A21472; Molecular Probes), streptavidin–Alexa Fluor 488 (S12354; Molecular Probes) and streptavidin–Alexa Fluor 546 (S11225; Molecular Probes). Images were acquired with an LSM 510 Meta confocal microscope (Zeiss).
values were normalized to Actb mRNA (encoding β-actin); miRNA results were normalized to those of the housekeeping small RNA RNU19.

