UZH-Logo

Maintenance Infos

Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient


Donati, Olivio F; Mazaheri, Yousef; Afaq, Asim; Vargas, Hebert A; Zheng, Junting; Moskowitz, Chaya S; Hricak, Hedvig; Akin, Oguz (2014). Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology, 271(1):143-152.

Abstract

PURPOSE: To evaluate the relationship between prostate cancer aggressiveness and histogram-derived apparent diffusion coefficient (ADC) parameters obtained from whole-lesion assessment of diffusion-weighted magnetic resonance (MR) imaging of the prostate and to determine which ADC metric may help best differentiate low-grade from intermediate- or high-grade prostate cancer lesions.
MATERIALS AND METHODS: The institutional review board approved this retrospective HIPAA-compliant study of 131 men (median age, 60 years) who underwent diffusion-weighted MR imaging before prostatectomy for prostate cancer. Clinically significant tumors (tumor volume > 0.5 mL) were identified at whole-mount step-section histopathologic examination, and Gleason scores of the tumors were recorded. A volume of interest was drawn around each significant tumor on ADC maps. The mean, median, and 10th and 25th percentile ADCs were determined from the whole-lesion histogram and correlated with the Gleason score by using the Spearman correlation coefficient (ρ). The ability of each parameter to help differentiate tumors with a Gleason score of 6 from those with a Gleason score of at least 7 was assessed by using the area under the receiver operating characteristic curve (Az).
RESULTS: In total, 116 clinically significant lesions (89 in the peripheral zone, 27 in the transition zone) were identified in 85 of the 131 patients (65%). Forty-six patients did not have a clinically significant lesion. For mean ADC, median ADC, 10th percentile ADC, and 25th percentile ADC, the Spearman ρ values for correlation with Gleason score were -0.31, -0.30, -0.36, and -0.35, respectively, whereas the Az values for differentiating lesions with a Gleason score of 6 from those with a Gleason score of at least 7 were 0.704, 0.692, 0.758, and 0.723, respectively. The Az of 10th percentile ADC was significantly higher than that of the mean ADC for all lesions and peripheral zone lesions (P = .0001).
CONCLUSION: When whole-lesion histograms were used to derive ADC parameters, 10th percentile ADC correlated with Gleason score better than did other ADC parameters, suggesting that 10th percentile ADC may prove to be optimal for differentiating low-grade from intermediate- or high-grade prostate cancer with diffusion-weighted MR imaging.

PURPOSE: To evaluate the relationship between prostate cancer aggressiveness and histogram-derived apparent diffusion coefficient (ADC) parameters obtained from whole-lesion assessment of diffusion-weighted magnetic resonance (MR) imaging of the prostate and to determine which ADC metric may help best differentiate low-grade from intermediate- or high-grade prostate cancer lesions.
MATERIALS AND METHODS: The institutional review board approved this retrospective HIPAA-compliant study of 131 men (median age, 60 years) who underwent diffusion-weighted MR imaging before prostatectomy for prostate cancer. Clinically significant tumors (tumor volume > 0.5 mL) were identified at whole-mount step-section histopathologic examination, and Gleason scores of the tumors were recorded. A volume of interest was drawn around each significant tumor on ADC maps. The mean, median, and 10th and 25th percentile ADCs were determined from the whole-lesion histogram and correlated with the Gleason score by using the Spearman correlation coefficient (ρ). The ability of each parameter to help differentiate tumors with a Gleason score of 6 from those with a Gleason score of at least 7 was assessed by using the area under the receiver operating characteristic curve (Az).
RESULTS: In total, 116 clinically significant lesions (89 in the peripheral zone, 27 in the transition zone) were identified in 85 of the 131 patients (65%). Forty-six patients did not have a clinically significant lesion. For mean ADC, median ADC, 10th percentile ADC, and 25th percentile ADC, the Spearman ρ values for correlation with Gleason score were -0.31, -0.30, -0.36, and -0.35, respectively, whereas the Az values for differentiating lesions with a Gleason score of 6 from those with a Gleason score of at least 7 were 0.704, 0.692, 0.758, and 0.723, respectively. The Az of 10th percentile ADC was significantly higher than that of the mean ADC for all lesions and peripheral zone lesions (P = .0001).
CONCLUSION: When whole-lesion histograms were used to derive ADC parameters, 10th percentile ADC correlated with Gleason score better than did other ADC parameters, suggesting that 10th percentile ADC may prove to be optimal for differentiating low-grade from intermediate- or high-grade prostate cancer with diffusion-weighted MR imaging.

Citations

51 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Date:2014
Deposited On:10 Jun 2014 11:46
Last Modified:05 Apr 2016 17:54
Publisher:Radiological Society of North America
ISSN:0033-8419
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1148/radiol.13130973
PubMed ID:24475824

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations