UZH-Logo

Maintenance Infos

Disentangling the influence of climatic and geological changes on species radiations


Linder, H Peter; Rabosky, Daniel L; Antonelli, Alexandre; Wüest, Rafael O; Ohlemüller, Ralf (2014). Disentangling the influence of climatic and geological changes on species radiations. Journal of Biogeography, 41(7):1313-1325.

Abstract

Aim
Our aim was to seek explanations for the differences in the diversity among the austral continents by comparing the diversification rates and patterns in the grass subfamily Danthonioideae. We asked specifically whether diversification is density dependent, whether it is different for each continent, and whether immigration rates impact on diversification rates. We attempted to account for intercontinental differences by comparing the Pleistocene climatic and Neogene geomorphological histories with the inferred diversification rates.
Location
Mainly the Southern Hemisphere, treated as four areas for the analyses: Africa, Australia, New Zealand and South America.
Methods
We based our analyses on a densely sampled, dated phylogeny for the grass subfamily Danthonioideae. We compared 24 diversification models for these continental radiations, taking into account speciation models, and extinction and dispersal rates. We used available distribution data to infer the climates under which danthonioids are found, and used these to estimate the change in area and location of suitable habitats between contemporary and Last Glacial Maximum climates. We inferred the geomorphological history from the literature.
Results
We show that long-distance dispersal led to parallel radiations, which more than doubled the final standing diversity in the subfamily. Diversification models with the strongest support included separate time-varying diversification processes for each major geographical region. Pleistocene climatic fluctuation did not explain the intercontinental differences in diversification patterns.
Main conclusions
Although our results are consistent with density-dependent diversification, this explanation is not consistent with the time of arrival of danthonioids on each continent. The diversification patterns on the four major Southern Hemisphere landmasses are idiosyncratic. The two most important predictors of diversity may be the lineage-specific effect of time, and the general effect of topographical complexity and orogenesis.

Abstract

Aim
Our aim was to seek explanations for the differences in the diversity among the austral continents by comparing the diversification rates and patterns in the grass subfamily Danthonioideae. We asked specifically whether diversification is density dependent, whether it is different for each continent, and whether immigration rates impact on diversification rates. We attempted to account for intercontinental differences by comparing the Pleistocene climatic and Neogene geomorphological histories with the inferred diversification rates.
Location
Mainly the Southern Hemisphere, treated as four areas for the analyses: Africa, Australia, New Zealand and South America.
Methods
We based our analyses on a densely sampled, dated phylogeny for the grass subfamily Danthonioideae. We compared 24 diversification models for these continental radiations, taking into account speciation models, and extinction and dispersal rates. We used available distribution data to infer the climates under which danthonioids are found, and used these to estimate the change in area and location of suitable habitats between contemporary and Last Glacial Maximum climates. We inferred the geomorphological history from the literature.
Results
We show that long-distance dispersal led to parallel radiations, which more than doubled the final standing diversity in the subfamily. Diversification models with the strongest support included separate time-varying diversification processes for each major geographical region. Pleistocene climatic fluctuation did not explain the intercontinental differences in diversification patterns.
Main conclusions
Although our results are consistent with density-dependent diversification, this explanation is not consistent with the time of arrival of danthonioids on each continent. The diversification patterns on the four major Southern Hemisphere landmasses are idiosyncratic. The two most important predictors of diversity may be the lineage-specific effect of time, and the general effect of topographical complexity and orogenesis.

Citations

14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 23 Jun 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Systematic Botany and Botanical Gardens
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:23 Jun 2014 15:26
Last Modified:05 Apr 2016 17:55
Publisher:Wiley-Blackwell
ISSN:0305-0270
Publisher DOI:https://doi.org/10.1111/jbi.12312

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations