UZH-Logo

Maintenance Infos

Brinker requires two corepressors for maximal and versatile repression in Dpp signalling.


Hasson, P; Müller, B; Basler, K; Paroush, Z (2001). Brinker requires two corepressors for maximal and versatile repression in Dpp signalling. The EMBO Journal, 20(20):5725-5736.

Abstract

decapentaplegic (dpp) encodes a Drosophila transforming growth factor-beta homologue that functions as a morphogen in the developing embryo and in adult appendage formation. In the wing imaginal disc, a Dpp gradient governs patterning along the anteroposterior axis by inducing regional expression of diverse genes in a concentration-dependent manner. Recent studies show that responses to graded Dpp activity also require an input from a complementary and opposing gradient of Brinker (Brk), a transcriptional repressor protein encoded by a Dpp target gene. Here we show that Brk harbours a functional and transferable repression domain, through which it recruits the corepressors Groucho and CtBP. By analysing transcriptional outcomes arising from the genetic removal of these corepressors, and by ectopically expressing Brk variants in the embryo, we demonstrate that these corepressors are alternatively used by Brk for repressing some Dpp-responsive genes, whereas for repressing other distinct target genes they are not required. Our results show that Brk utilizes multiple means to repress its endogenous target genes, allowing repression of a multitude of complex Dpp target promoters.

decapentaplegic (dpp) encodes a Drosophila transforming growth factor-beta homologue that functions as a morphogen in the developing embryo and in adult appendage formation. In the wing imaginal disc, a Dpp gradient governs patterning along the anteroposterior axis by inducing regional expression of diverse genes in a concentration-dependent manner. Recent studies show that responses to graded Dpp activity also require an input from a complementary and opposing gradient of Brinker (Brk), a transcriptional repressor protein encoded by a Dpp target gene. Here we show that Brk harbours a functional and transferable repression domain, through which it recruits the corepressors Groucho and CtBP. By analysing transcriptional outcomes arising from the genetic removal of these corepressors, and by ectopically expressing Brk variants in the embryo, we demonstrate that these corepressors are alternatively used by Brk for repressing some Dpp-responsive genes, whereas for repressing other distinct target genes they are not required. Our results show that Brk utilizes multiple means to repress its endogenous target genes, allowing repression of a multitude of complex Dpp target promoters.

Citations

60 citations in Web of Science®
60 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

37 downloads since deposited on 11 Feb 2008
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:15 October 2001
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:European Molecular Biology Organization ; Nature Publishing Group
ISSN:0261-4189
Publisher DOI:10.1093/emboj/20.20.5725
PubMed ID:11598015
Permanent URL: http://doi.org/10.5167/uzh-970

Download

[img]
Preview
Filetype: PDF
Size: 589kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations