UZH-Logo

Maintenance Infos

openBEB: open biological experiment browser for correlative measurements


Ramakrishnan, Chandrasekhar; Bieri, Andrej; Sauter, Nora; Roizard, Sophie; Ringler, Philippe; Müller, Shirley A; Goldie, Kenneth N; Enimanev, Kaloyan; Stahlberg, Henning; Rinn, Bernd; Braun, Thomas (2014). openBEB: open biological experiment browser for correlative measurements. BMC Bioinformatics, 15:84.

Abstract

Background: New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results: We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions: The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy, microfluidic control and visual proteomics. In this example, measurements from diverse complementary techniques are combined and correlated.

Abstract

Background: New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results: We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions: The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy, microfluidic control and visual proteomics. In this example, measurements from diverse complementary techniques are combined and correlated.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 10 Jul 2014
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > CINA
Special Collections > SystemsX.ch > Research, Technology and Development Projects
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:10 Jul 2014 09:39
Last Modified:31 Oct 2016 16:08
Publisher:BioMed Central
ISSN:1471-2105
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2105-15-84
PubMed ID:24666611

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations