UZH-Logo

Maintenance Infos

Schnurri mediates Dpp-dependent repression of brinker transcription.


Marty, T; Müller, B; Basler, K; Affolter, M (2000). Schnurri mediates Dpp-dependent repression of brinker transcription. Nature Cell Biology, 2(10):745-749.

Abstract

Signalling by Decapentaplegic (Dpp), a member of the TGFbeta superfamily of signalling molecules, controls many aspects of Drosophila development by activating and repressing target genes. Several essential components of the Dpp signalling pathway have been identified, including the Dpp receptors Punt and Thick veins (Tkv) as well as the cytoplasmic mediators Mad and Medea. For target genes to be activated, Dpp signalling must suppress transcription of a repressor encoded by the brinker (brk) gene. Here we show that Schnurri (Shn), a large zinc-finger protein, is essential for Dpp-mediated repression of brk transcription; in contrast, Shn is not required for target-gene activation. Thus, the Dpp signalling pathway bifurcates, downstream of the signal-mediating SMAD proteins, into a Shn-dependent pathway leading to brk repression and a Shn-independent pathway leading to gene activation. The existence of several Shn-like proteins in vertebrates and the observation that Brk functions in BMP signalling in Xenopus indicates that a similar regulatory cascade may be conserved in higher organisms.

Abstract

Signalling by Decapentaplegic (Dpp), a member of the TGFbeta superfamily of signalling molecules, controls many aspects of Drosophila development by activating and repressing target genes. Several essential components of the Dpp signalling pathway have been identified, including the Dpp receptors Punt and Thick veins (Tkv) as well as the cytoplasmic mediators Mad and Medea. For target genes to be activated, Dpp signalling must suppress transcription of a repressor encoded by the brinker (brk) gene. Here we show that Schnurri (Shn), a large zinc-finger protein, is essential for Dpp-mediated repression of brk transcription; in contrast, Shn is not required for target-gene activation. Thus, the Dpp signalling pathway bifurcates, downstream of the signal-mediating SMAD proteins, into a Shn-dependent pathway leading to brk repression and a Shn-independent pathway leading to gene activation. The existence of several Shn-like proteins in vertebrates and the observation that Brk functions in BMP signalling in Xenopus indicates that a similar regulatory cascade may be conserved in higher organisms.

Citations

90 citations in Web of Science®
87 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 October 2000
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:Nature Publishing Group
ISSN:1465-7392
Publisher DOI:https://doi.org/10.1038/35036383
PubMed ID:11025666

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations