UZH-Logo

Maintenance Infos

Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1


Grieder, N C; Nellen, D; Burke, R; Basler, K; Affolter, M (1995). Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell, 81(5):791-800.

Abstract

Cytokines of the TGF beta superfamily regulate many aspects of cellular function by activating receptor complexes consisting of two distantly related serine/threonine kinases. Previous studies have indicated that Drosophila dpp uses similar signaling complexes and strictly requires the punt and thick veins receptors to transduce the signal across the membrane. Here, we show that the schnurri (shn) gene is required for many aspects of dpp signaling. Genetic epistasis experiments indicate that shn functions downstream of the dpp signal and its receptors. The shn gene encodes a large protein similar to a family of mammalian zinc finger transcription factors. The shn protein might therefore act as a nuclear target in the dpp signaling pathway directly regulating the expression of dpp-responsive genes.

Abstract

Cytokines of the TGF beta superfamily regulate many aspects of cellular function by activating receptor complexes consisting of two distantly related serine/threonine kinases. Previous studies have indicated that Drosophila dpp uses similar signaling complexes and strictly requires the punt and thick veins receptors to transduce the signal across the membrane. Here, we show that the schnurri (shn) gene is required for many aspects of dpp signaling. Genetic epistasis experiments indicate that shn functions downstream of the dpp signal and its receptors. The shn gene encodes a large protein similar to a family of mammalian zinc finger transcription factors. The shn protein might therefore act as a nuclear target in the dpp signaling pathway directly regulating the expression of dpp-responsive genes.

Citations

162 citations in Web of Science®
165 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

60 downloads since deposited on 11 Feb 2008
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2 June 1995
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:Elsevier
ISSN:0092-8674
Publisher DOI:https://doi.org/10.1016/0092-8674(95)90540-5
PubMed ID:7774018

Download

[img]
Preview
Filetype: PDF
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations