UZH-Logo

An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds


Sinicropi, A; Martin, E; Ryazantsev, M; Helbing, J; Briand, J; Sharma, D; Léonard, J; Haacke, S; Cannizzo, A; Chergui, M; Zanirato, V; Fusi, S; Santoro, F; Basosi, R; Ferré, N; Olivucci, M (2008). An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 105(46):17642-17647.

Abstract

Single molecules that act as light-energy transducers (e.g., converting the energy of a photon into atomic-level mechanical motion) are examples of minimal molecular devices. Here, we focus on a molecular switch designed by merging a conformationally locked diarylidene skeleton with a retinal-like Schiff base and capable of mimicking, in solution, different aspects of the transduction of the visual pigment Rhodopsin. Complementary ab initio multiconfigurational quantum chemistry-based computations and time-resolved spectroscopy are used to follow the light-induced isomerization of the switch in methanol. The results show that, similar to rhodopsin, the isomerization occurs on a 0.3-ps time scale and is followed by <10-ps cooling and solvation. The entire (2-photon-powered) switch cycle was traced by following the evolution of its infrared spectrum. These measurements indicate that a full cycle can be completed within 20 ps.

Single molecules that act as light-energy transducers (e.g., converting the energy of a photon into atomic-level mechanical motion) are examples of minimal molecular devices. Here, we focus on a molecular switch designed by merging a conformationally locked diarylidene skeleton with a retinal-like Schiff base and capable of mimicking, in solution, different aspects of the transduction of the visual pigment Rhodopsin. Complementary ab initio multiconfigurational quantum chemistry-based computations and time-resolved spectroscopy are used to follow the light-induced isomerization of the switch in methanol. The results show that, similar to rhodopsin, the isomerization occurs on a 0.3-ps time scale and is followed by <10-ps cooling and solvation. The entire (2-photon-powered) switch cycle was traced by following the evolution of its infrared spectrum. These measurements indicate that a full cycle can be completed within 20 ps.

Citations

51 citations in Web of Science®
55 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

19 downloads since deposited on 22 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2008
Deposited On:22 Jan 2009 14:07
Last Modified:05 Apr 2016 12:48
Publisher:National Academy of Sciences
ISSN:0027-8424
Additional Information:Copyright: National Academy of Sciences USA
Publisher DOI:10.1073/pnas.0802376105
PubMed ID:19004797
Permanent URL: http://doi.org/10.5167/uzh-9859

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations