UZH-Logo

Maintenance Infos

Advanced modelled iterative reconstruction for abdominal CT: Qualitative and quantitative evaluation


Gordic, S; Desbiolles, L; Stolzmann, P; Gantner, L; Leschka, S; Husarik, D B; Alkadhi, H (2014). Advanced modelled iterative reconstruction for abdominal CT: Qualitative and quantitative evaluation. Clinical Radiology, 69(12):e497-504.

Abstract

AIM: To determine qualitative and quantitative image-quality parameters in abdominal imaging using advanced modelled iterative reconstruction (ADMIRE) with third-generation dual-source 192 section CT.
MATERIALS AND METHODS: Forty patients undergoing abdominal portal-venous CT at different tube voltage levels (90, 100, 110, and 120 kVp, n = 10 each) and 10 consecutive patients undergoing abdominal non-enhanced low-dose CT (100 kVp, 60 mAs) using a third-generation dual-source 192 section CT machine in the single-source mode were included. Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). Two blinded, independent readers subjectively determined image noise, artefacts, visibility of small structures, and image contrast, and measured attenuation in the liver, spleen, kidney, muscle, fat, and urinary bladder, and objective image noise.
RESULTS: Subjective noise was significantly lower and image contrast significantly higher for each increasing ADMIRE strength level and also for ADMIRE 1 compared to FBP (all, p < 0.001). No significant differences were found for artefact and visibility ratings among image sets (all, p > 0.05). Attenuation was similar across tube voltage-image datasets in all anatomical regions (all, p > 0.05). Objective noise was significantly lower for each increasing ADMIRE strength level, and for ADMIRE 1 compared to FBP (all, p < 0.001, maximal reduction 53%). Independent predictors of noise were tube voltage (p < 0.05) and current (p < 0.001), diameter (p < 0.05), and reconstruction algorithm (p<0.001); the amount of noise reduction was related only to the reconstruction algorithm (p < 0.001).
CONCLUSION: Abdominal CT using ADMIRE results in an improved image quality with lower image noise as compared with FBP, while the attenuation of various anatomical regions remains constant among reconstruction algorithms.

AIM: To determine qualitative and quantitative image-quality parameters in abdominal imaging using advanced modelled iterative reconstruction (ADMIRE) with third-generation dual-source 192 section CT.
MATERIALS AND METHODS: Forty patients undergoing abdominal portal-venous CT at different tube voltage levels (90, 100, 110, and 120 kVp, n = 10 each) and 10 consecutive patients undergoing abdominal non-enhanced low-dose CT (100 kVp, 60 mAs) using a third-generation dual-source 192 section CT machine in the single-source mode were included. Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). Two blinded, independent readers subjectively determined image noise, artefacts, visibility of small structures, and image contrast, and measured attenuation in the liver, spleen, kidney, muscle, fat, and urinary bladder, and objective image noise.
RESULTS: Subjective noise was significantly lower and image contrast significantly higher for each increasing ADMIRE strength level and also for ADMIRE 1 compared to FBP (all, p < 0.001). No significant differences were found for artefact and visibility ratings among image sets (all, p > 0.05). Attenuation was similar across tube voltage-image datasets in all anatomical regions (all, p > 0.05). Objective noise was significantly lower for each increasing ADMIRE strength level, and for ADMIRE 1 compared to FBP (all, p < 0.001, maximal reduction 53%). Independent predictors of noise were tube voltage (p < 0.05) and current (p < 0.001), diameter (p < 0.05), and reconstruction algorithm (p<0.001); the amount of noise reduction was related only to the reconstruction algorithm (p < 0.001).
CONCLUSION: Abdominal CT using ADMIRE results in an improved image quality with lower image noise as compared with FBP, while the attenuation of various anatomical regions remains constant among reconstruction algorithms.

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:17 September 2014
Deposited On:01 Oct 2014 12:26
Last Modified:05 Apr 2016 18:23
Publisher:Elsevier
ISSN:0009-9260
Publisher DOI:https://doi.org/10.1016/j.crad.2014.08.012
PubMed ID:25239788

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations