Header

UZH-Logo

Maintenance Infos

ARTD2 activity is stimulated by RNA


Léger, Karolin; Bär, Dominik; Savić, Nataša; Santoro, Raffaella; Hottiger, Michael O (2014). ARTD2 activity is stimulated by RNA. Nucleic Acids Research, 42(8):5072-5082.

Abstract

ADP-ribosyltransferases (ARTs) are important enzymes that regulate the genotoxic stress response and the maintenance of genome integrity. ARTD1 (PARP1) and ARTD2 (PARP2) are homologous proteins that modify themselves and target proteins by the addition of mono- and poly-ADP-ribose (PAR) moieties. Both enzymes have been described to be involved in the genotoxic stress response. Here, we characterize cellular PAR formation on hydrogen peroxide (H2O2) or N-methyl-N'-methyl-nitro-N-nitrosoguanidine (MNNG) stress, in combination with application of the RNA polymerase I inhibitor Actinomycin D (ActD), known to cause accumulation of short RNA polymerase I-dependent rRNA transcripts. Intriguingly, co-treatment with ActD substantially increased H2O2- or MNNG-induced PAR formation. In cells, this enhancement was predominantly mediated by ARTD2 and not ARTD1. In vitro experiments confirmed that ARTD2 is strongly activated by RNA and that the N-terminal SAP domain is important for the binding to RNA. Thus, our findings identify a new activator of ARTD2-dependent ADP-ribosylation, which has important implications for the future analysis of the biological role of ARTD2 in the nucleus.

Abstract

ADP-ribosyltransferases (ARTs) are important enzymes that regulate the genotoxic stress response and the maintenance of genome integrity. ARTD1 (PARP1) and ARTD2 (PARP2) are homologous proteins that modify themselves and target proteins by the addition of mono- and poly-ADP-ribose (PAR) moieties. Both enzymes have been described to be involved in the genotoxic stress response. Here, we characterize cellular PAR formation on hydrogen peroxide (H2O2) or N-methyl-N'-methyl-nitro-N-nitrosoguanidine (MNNG) stress, in combination with application of the RNA polymerase I inhibitor Actinomycin D (ActD), known to cause accumulation of short RNA polymerase I-dependent rRNA transcripts. Intriguingly, co-treatment with ActD substantially increased H2O2- or MNNG-induced PAR formation. In cells, this enhancement was predominantly mediated by ARTD2 and not ARTD1. In vitro experiments confirmed that ARTD2 is strongly activated by RNA and that the N-terminal SAP domain is important for the binding to RNA. Thus, our findings identify a new activator of ARTD2-dependent ADP-ribosylation, which has important implications for the future analysis of the biological role of ARTD2 in the nucleus.

Statistics

Citations

14 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

24 downloads since deposited on 04 Nov 2014
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:04 Nov 2014 16:09
Last Modified:13 Aug 2017 04:42
Publisher:Oxford University Press
ISSN:0305-1048
Funders:SNF 310030B_138667
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/nar/gku131
PubMed ID:24510188

Download

Download PDF  'ARTD2 activity is stimulated by RNA'.
Preview
Content: Published Version
Filetype: PDF
Size: 7MB
View at publisher