Header

UZH-Logo

Maintenance Infos

Generation of a transgenic ORFeome library in Drosophila


Bischof, Johannes; Sheils, Emma M; Björklund, Mikael; Basler, Konrad (2014). Generation of a transgenic ORFeome library in Drosophila. Nature Protocols, 9(7):1607-1620.

Abstract

Overexpression screens can be used to explore gene function in Drosophila melanogaster, but to demonstrate their full potential, comprehensive and systematic collections of fly strains are required. Here we provide a protocol for high-throughput cloning of Drosophila open-reading frames (ORFs) that are regulated by upstream activation sequences (UAS sites); the resulting GAL4-inducible UAS-ORF plasmid library is then used to generate Drosophila strains by ΦC31 integrase-mediated site-specific integration. We also provide details for FLP/FRT-mediated in vivo exchange of epitope tags (or regulatory regions) in the ORF library strains, which further extends the potential applications of the library. These transgenic UAS-ORF strains are a useful resource to complement and validate genetic experiments performed with loss-of-function mutants and RNA interference (RNAi) lines. The duration of the complete protocol strongly depends on the number of ORFs required, but embryos can be injected and balanced fly stocks can be established within ∼7-8 weeks for a few genes.

Abstract

Overexpression screens can be used to explore gene function in Drosophila melanogaster, but to demonstrate their full potential, comprehensive and systematic collections of fly strains are required. Here we provide a protocol for high-throughput cloning of Drosophila open-reading frames (ORFs) that are regulated by upstream activation sequences (UAS sites); the resulting GAL4-inducible UAS-ORF plasmid library is then used to generate Drosophila strains by ΦC31 integrase-mediated site-specific integration. We also provide details for FLP/FRT-mediated in vivo exchange of epitope tags (or regulatory regions) in the ORF library strains, which further extends the potential applications of the library. These transgenic UAS-ORF strains are a useful resource to complement and validate genetic experiments performed with loss-of-function mutants and RNA interference (RNAi) lines. The duration of the complete protocol strongly depends on the number of ORFs required, but embryos can be injected and balanced fly stocks can be established within ∼7-8 weeks for a few genes.

Statistics

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 17 Nov 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:12 July 2014
Deposited On:17 Nov 2014 15:55
Last Modified:05 Apr 2016 18:30
Publisher:Nature Publishing Group
ISSN:1750-2799
Publisher DOI:https://doi.org/10.1038/nprot.2014.105
PubMed ID:24922270

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations