Header

UZH-Logo

Maintenance Infos

Hsp90 blockers inhibit adipocyte differentiation and fat mass accumulation


Desarzens, Sébastien; Liao, Wan-Hui; Mammi, Caterina; Caprio, Massimiliano; Faresse, Nourdine (2014). Hsp90 blockers inhibit adipocyte differentiation and fat mass accumulation. PLoS ONE, 9(4):e94127.

Abstract

Geldanamycin derivatives are benzoquinone ansamycin antibiotics that bind to Hsp90 and alter its function. The alteration of Hsp90 activity limits some cellular hormonal responses by inhibiting nuclear receptors activation. The nuclear receptors activity, such as PPARγ, the mineralocorticoid and glucocorticoid receptors (MR and GR) play a critical role in the conversion of preadipocytes to mature adipocytes. Given the importance of these nuclear receptors for adipogenesis, we investigated the effects of geldanamycin analogues (GA) on adipocyte differentiation and function. We found that early exposure of preadipocyte cells to GA inhibited their conversion into mature adipocytes by inhibiting the adipogenic transcriptional program and lipid droplets accumulation. Furthermore, GA altered the adipokines secretion profile of mature adipocyte. The anti-adipogenic effect of GA was also confirmed in mice fed a high fat diet. Biochemical analysis revealed that anti-adipogenic effects of geldanamycin analogues may result from the simultaneous inhibition of MR, GR and PPARγ activity. Taken together, our observations lead us to propose Hsp90 as a potent target for drug development in the control of obesity and its related metabolic complications.

Abstract

Geldanamycin derivatives are benzoquinone ansamycin antibiotics that bind to Hsp90 and alter its function. The alteration of Hsp90 activity limits some cellular hormonal responses by inhibiting nuclear receptors activation. The nuclear receptors activity, such as PPARγ, the mineralocorticoid and glucocorticoid receptors (MR and GR) play a critical role in the conversion of preadipocytes to mature adipocytes. Given the importance of these nuclear receptors for adipogenesis, we investigated the effects of geldanamycin analogues (GA) on adipocyte differentiation and function. We found that early exposure of preadipocyte cells to GA inhibited their conversion into mature adipocytes by inhibiting the adipogenic transcriptional program and lipid droplets accumulation. Furthermore, GA altered the adipokines secretion profile of mature adipocyte. The anti-adipogenic effect of GA was also confirmed in mice fed a high fat diet. Biochemical analysis revealed that anti-adipogenic effects of geldanamycin analogues may result from the simultaneous inhibition of MR, GR and PPARγ activity. Taken together, our observations lead us to propose Hsp90 as a potent target for drug development in the control of obesity and its related metabolic complications.

Statistics

Citations

9 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

37 downloads since deposited on 17 Nov 2014
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:4 April 2014
Deposited On:17 Nov 2014 17:35
Last Modified:11 Aug 2017 06:25
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0094127
PubMed ID:24705830

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations