Purification of fire derived markers for g scale isotope analysis (^{13}C, $\Delta^{14}C$) using high performance liquid chromatography (HPLC)

Gierga, Merle; Schneider, Maximilian P W; Wiedemeier, Daniel B; Lang, Susan Q; Smittenberg, Rienk H; Hajdas, Irka; Bernasconi, Stefano M; Schmidt, Michael W I

Abstract: Black carbon (BC) is the residue of incomplete biomass combustion. It is ubiquitous in nature and, due to its relative persistence, is an important factor in Earth’s slow-cycling carbon pool. This resistant nature makes pure BC one of the most used materials for 1C dating to elucidate its formation date or residence time in the environment. However, most BC samples cannot be physically separated from their matrices, precluding accurate 1C values. Here we present a method for radiocarbon dating of the oxidation products of BC, benzene polycarboxylic acids, thereby circumventing interference from extraneous carbon. Individual compounds were isolated using high performance liquid chromatography (HPLC) and converted to CO$_2$ via wet chemical oxidation for ^{13}C and 1C isotope analysis. A detailed assessment was performed to identify and quantify sources of extraneous carbon contamination using two process standards with distinct isotopic signatures. The average blank was 1.6 ± 0.7 g C and had an average radiocarbon content of 0.90 ± 0.50 F1C. We successfully analyzed the 1C content of individual benzene polycarboxylic acids with a sample size as small as 20–30 g C after correcting for the presence of the average blank. The combination of ^{13}C and F1C analysis helps interpret the results and enables monitoring of extraneous carbon contribution in a fast and cost efficient way. Such a molecular approach to radiocarbon dating of BC residues enables the expansion of isotopic BC studies to samples that have either been too small or strongly affected by non-fire derived carbon.

DOI: https://doi.org/10.1016/j.orggeochem.2014.02.008

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-100889
Accepted Version

Originally published at:
Gierga, Merle; Schneider, Maximilian P W; Wiedemeier, Daniel B; Lang, Susan Q; Smittenberg, Rienk H; Hajdas, Irka; Bernasconi, Stefano M; Schmidt, Michael W I (2014). Purification of fire derived markers for g scale isotope analysis (^{13}C, $\Delta^{14}C$) using high performance liquid chromatography (HPLC). Organic Geochemistry, 70:1-9.

DOI: https://doi.org/10.1016/j.orggeochem.2014.02.008
ABSTRACT

Black carbon (BC) is the residue of incomplete biomass combustion. It is ubiquitous in nature and, due to its relative persistence, is an important factor in Earth’s slow-cycling carbon pool. This resistant nature makes pure BC one of the most used materials for Δ^{13}C and Δ^{14}C isotope analysis to elucidate its formation date or residence time in the environment. However, most BC samples cannot be physically separated from their matrices, precluding accurate Δ^{14}C values. Here we present a method for radiocarbon dating of the oxidation products of BC, benzene polycarboxylic acids, thereby circumventing interference from extraneous carbon. Individual compounds were isolated using high performance liquid chromatography (HPLC) and converted to CO$_2$ via wet chemical oxidation for Δ^{13}C and Δ^{14}C isotope analysis. A detailed assessment was performed to identify and quantify sources of extraneous carbon contamination with two process standards of distinct isotopic signatures. The average blank was 1.6 \pm 0.7 μg C and had an average radiocarbon content of 0.90 \pm 0.50 F14C. We successfully analyzed the Δ^{14}C content of individual benzene polycarboxylic acids with a sample size as small as 20-30 μg C after correcting for the presence of the average blank. The combination of Δ^{13}C and F14C analysis helps interpret the results and enables monitoring of extraneous carbon contribution in a fast and cost efficient way. Such a molecular approach to radiocarbon dating of BC residues enables the expansion of isotopic BC studies to samples that have either been too small or strongly affected by non-fire derived carbon.

Keywords: Compound-specific radiocarbon and isotope analyses; CSRA; benzene polycarboxylic acids; HPLC
1. Introduction

The solid residues of incomplete biomass combustion are generally summarized under the term black carbon (BC). It is ubiquitous in nature and can be found in the atmosphere, sediments, water and ice (Goldberg, 1985) and includes a continuum of combustion products ranging from slightly charred biomass to char and charcoal to highly condensed refractory soot (Hedges et al., 2000; Masiello, 2004). Fire derived components are of interest for the investigation of the global C cycle due to their relative persistence in the environment. It is widely accepted that BC contributes significantly to the Earth’s slow-cycling C pool (Skjemstad et al., 1996, 2001; Schmidt et al., 2000; Preston and Schmidt, 2006; Knicker et al., 2008) and in models of soil organic matter (OM) turnover it is defined as a C pool with relatively high resistance to degradation (Skjemstad et al., 2004). It is also utilized in the reconstruction of fire history from geological records (e.g. Glaser et al., 2000; Carcailllet et al., 2002; Tinner et al., 2005). Similarly, pure charcoal is of importance for archeological research; in addition, the presence of BC at excavation sites allows precise determination of the age of the finds from 14C analysis. Consequently, pieces of pure charcoal are one of the most targeted materials for 14C dating in archaeological or geological research (Bird et al., 1999).

Nevertheless, the physicochemical properties and the biological stability of BC are poorly understood and even quantification is inherently difficult. One promising approach towards a better understanding and quantification of BC is a molecular method, the so-called ‘BPCA method’ introduced by Glaser et al. (1998). Benzene polycarboxylic acids (BPCAs) result from the digestion of BC with HNO$_3$ under high pressure and temperature, and can be analyzed using either gas chromatography (GC; Glaser et al., 1998) or high performance liquid chromatography (HPLC; Dittmar, 2008; Wiedemeier et al., 2013). The BPCAs derive unambiguously from BC and provide insight into the original BC at a molecular scale. In addition to being a quantifiable molecular proxy for the total amount of BC in a complex matrix, the relative distribution of individual BPCAs can provide further information. For example, a relatively high amount of highly carboxylated BPCAs such as mellitic acid (B6CA) and benzene pentacarboxylic acid (B5CA) is indicative of a high degree of condensation (Dittmar, 2008; Schneider et al., 2011). The numbers in the notation indicate the number of substituted carboxylic acid groups per benzene ring.

The radiocarbon signature of BPCAs has potential for elucidating the fate and source of BC in nature, as the concentration of 14C in a BC sample can be directly related to its age or mean residence time. For recent BC samples, 14C analysis allows source apportioning of the BC between fossil fuel derived charcoal that is depleted in 14C (14C 0) and burned modern...
biomass that reflects atmospheric radiocarbon content (F_{14}C ≥ 1). On the whole, there is an
esential advantage in determining the ^{14}C content of these specific biomarkers vs. dating of
bulk BC samples (e.g. Ziolkowski and Druffel, 2009; Zimmerman, 2010; Yarnes et al., 2011).
In particular, analysis of bulk samples frequently suffers from large uncertainty due to small
sample size and the challenge in physically separating pure BC from interfering OM. For
example, OM in soils and sediments is a complex mixture of compounds, which can range
from recently produced compounds to very old material (Hedges et al., 2000). The same is
true for buried archaeological samples. The matrix of pottery can contain organic carbon-
bearing clay closely associated with the charred residue, or organic carbon can be taken up
from the burial environment, causing further interference.

Eglinton et al. (1996) introduced the concept of compound-specific radiocarbon analysis
(CSRA) applied to certain solvent extractable lipids. The first application using the BPCA
method to date BC on a molecular scale was by Ziolkowski and Druffel (2009a), who
separated individual BPCAs using preparative GC, and achieved reliable results with
reasonably low and constant blanks. Nevertheless, the method has several drawbacks. BPCAs
must be treated to form GC-amenable derivatives, requiring the addition of external C. The
authors applied trimethylsilyl-diazomethane as derivatization agent. Even though it has been
reported to be more efficient than other derivatization protocols (Ziolkowski and Druffel,
2009b), it is known that losses can occur. This is also true for the most common derivatization
technique, silylation with BSTFA (Schneider et al., 2011). Finally, a GC column has limited
capacity, necessitating a number of injections to collect sufficient material for dating. Many
of the problems can be circumvented by separating the BPCAs using HPLC (Dittmar, 2008;
Wiedemeier et al., 2013).

In general, ^{14}C analysis is sensitive to any contribution from extraneous carbon (C_{ex}) added to
the sample during the laboratory protocol. This is particularly true for ultra small scale
samples containing < 30 µg C. Purification procedures for CSRA must therefore be designed
to minimize and accurately quantify C_{ex} addition (Pearson et al., 1998; Shah and Pearson,
2007; Ziolkowski and Druffel, 2009a; Birkholz et al., 2013; Lang et al., 2013).

In this study we present a new approach for molecular scale ^{14}C analysis of fire-derived
compounds on the basis of the separation of BPCAs using liquid chromatography
(Wiedemeier et al., 2013) combined with a recent method of wet oxidation suitable for
combined ^{13}C and ^{14}C isotope analysis (Lang et al., 2012, 2013). The method allows sample
oxidation despite the presence of concentrated H_{3}PO_{4}, which is essential for achieving
separation of the BPCAs with HPLC. The direct conversion of the BPCAs to CO_{2} within a gas
tight vial allows the sample gas to be subsampled for δ^{13}C analysis prior to injection for
accelerator mass spectrometry (AMS).
We describe the successful purification of individual B5CAs and B6CAs followed by δ^{13}C and F14C analysis. A detailed blank assessment was carried out using direct and indirect approaches to assess the amount and the isotopic signature of C$_{ex}$. Two different types of charcoal were selected as standards. The first was an archaeological charcoal with a 14C age $>$ 50000 BP (≤ 0.02 F14C) and the second a modern charcoal (≥ 1 F14C) prepared from a recently cut tree. Together they represented the end members of 14C analysis and thereby allowed a good evaluation of this new method for BC dating.

2. Experimental

The data were produced from two successive series of experiments. Both included HPLC isolation followed by wet oxidation, GC-isotope ratio mass spectrometry (GC-IRMS) and AMS measurements. All glassware was pre-heated to 450 °C for 5 h prior to use to remove organic contaminants. Ultra pure water was supplied from a MilliQ Advantage A10 system (Millipore, USA) and all chemicals were of the highest available grade and were tested for impurities before use.

2.1. Process standards

The archaeological charcoal sample (‘fossil char’) was from in situ charred trees sampled from paroxysmal flow deposits in the Maninjau caldera in West-Central Sumatra (Alloway et al., 2004). Its precise dating using conventional AMS demonstrated that it lacked 14C and had an age of ca. 50 ka BP (Alloway et al., 2004; Ascough et al., 2009). The modern analog (‘modern char’) was produced from chestnut wood (Castanea sativa) from a single tree cut in a forest in Southern Switzerland. The wood was charred at 450 °C for 5 h under a N$_2$ atmosphere (Hammes et al., 2006).

The samples were of almost pure charcoal, one was recovered in-situ and the other was produced in the laboratory under controlled conditions, allowing the assumption that they were not significantly affected by interfering C-bearing material. Therefore the radiocarbon contents of the bulk samples were expected to be the same as that of the isolated BPCAs.

Bulk subsamples were analyzed for 14C content as solid targets at the Laboratory of Ion Beam Physics of the ETH Zürich, Switzerland after being sequentially extracted with acid and base reagents to remove contaminants from the surfaces. The so-called acid-base-acid (ABA) treatment is a standard cleaning procedure prior to 14C analysis (Hajdas et al., 2004). The 14C content of the fossil char was found to be 0.003 ± 0.001 F14C (ETH-50456). The modern char was produced from unaltered dried wood that had a 14C content of 1.142 ± 0.004 F14C (ETH-50458) and its charred residue was almost identical at 1.149 ± 0.004 F14C (ETH-50457).

These values were used as reference values.
2.2. Sample extraction and purification

Extraction and purification of BPCAs was carried out according to the protocol of Wiedemeier et al. (2013) with modifications to make it amenable for CSRA. In brief, 15-25 mg of the dried and milled sample was directly digested in a quartz tube with 2 ml HNO₃ (65 wt.% or 14.4 mol/l) at 170 °C for 8 h. After cooling, the aqueous solution was filtered over pre-rinsed quartz fiber filters. The extract was eluted over a cation exchange resin and freeze dried to remove water and acid. The dried residue was dissolved in MeOH/water (1:1, v/v) and applied to a pre-conditioned C₁₈ solid phase extraction cartridge to remove apolar components. Finally, the eluate was dried again using an Eppendorf concentrator system.

2.3. HPLC purification

Individual BPCAs were isolated using an Agilent 1290 Infinity UPLC instrument (Santa Clara, USA). Separation was achieved with an Agilent Poroshell 120-SB C₁₈ column (4.6 × 100 mm, 2.7 µm pore size) using a gradient of diluted ortho H₃PO₄ buffered to pH 1.2 with NaH₂PO₄ (mobile phase A) and pure MeCN (mobile phase B). Compounds were detected with an Agilent 1290 Infinity diode array detector at 216 and 240 nm.

Extracted samples (‘total digest’) were diluted in ultra pure water to achieve a concentration of B5CA and B6CA of ca. 200 ± 50 ng C/µl for HPLC injection. A small (1 µl) initial injection was made to quantify the peaks and assign retention times. Larger (5 µl) injections (10-30 in total) were then made for fraction collection. The mobile phase was collected during the time windows corresponding to the elution of the B5CA and B6CA compounds into pre-combusted glass vials with a time-programmed analytical fraction collector (Agilent 1260 AS-FC). The collected fractions were transferred to screw cap vials with borosilicate pipettes and dried under a stream of N₂ to remove all mobile phases with the exception of non-volatile H₃PO₄. Before drying, a small aliquot was re-injected on HPLC to assess the recovery and purity of the isolated compounds. Quantification was carried out with an external standard series that contained a mixture of commercially available BPCAs (Wiedemeier et al., 2013).

2.4. Wet oxidation

The compound-specific isotopic signature (δ¹³C, F¹⁴C) of isolated BPCAs was determined with the methods described by Lang et al. (2012, 2013). Specifically, isolated and acidified samples were transferred to 12 ml gas tight vials, diluted with Milli-Q water to a total volume of 4 ml, and spiked with 0.75 ml supersaturated oxidizing solution (100 ml H₂O + 2.0 g K₂S₂O₈ + 200 µl 85% H₃PO₄). Vials were sealed using a standard cap with a butyl rubber septum and flushed with high purity He (grade 5.0, 99.999%) for 8 min at 125 ml/min to remove atmospheric CO₂ from the headspace. The output gas stream passed through a water
trap to prevent backflow of atmospheric CO$_2$. Then, the vials were heated to 100 °C for 60 min to oxidize the BPCAs to CO$_2$. Samples were allowed to cool to room temperature overnight. Modern sucrose [Sigma Aldrich, P/N S7903, lot 090M02112V, F14C 1.053 ± 0.03 (ETH-47293)] and F14C-free phthalic acid [Sigma Aldrich, P/N 80010, lot 1431342V, F14C ≤ 0.0025 (ETH-42443)] were used to assess the addition of external carbonaceous material during oxidation and transfer. Both were oxidized and analyzed for δ13C and F14C.

2.5. Stable carbon isotope analysis (δ13C)

The stable carbon isotopic composition of the headspace CO$_2$ was measured with two approaches. For initial tests, we analyzed the C content of various blank samples to determine background values, while the isotopic composition was of secondary interest. These samples were analyzed on a GasBench II on-line gas preparation and introduction system (Thermo Fisher Scientific, Bremen, Germany) coupled to a ConFlo IV interface and a Delta V Plus mass spectrometer (both Thermo Fisher Scientific), allowing the accurate detection of C content and 13C of samples as small as 5 µg C. As δ13C analysis with the GasBench uses the majority of the CO$_2$, samples were also analyzed with a second method designed to preserve the majority of the CO$_2$ for 14C analysis. In this approach, 100 µl of headspace gas was removed from the vials with a gastight syringe (Hamilton). The gas was injected into a gas chromatograph (Agilent 6890) with a split/splitless inlet and which was directly connected to a Delta V Plus via a ConFlo IV interface (both Thermo Fisher Scientific, Bremen, Germany). CO$_2$ was separated from interfering gases with a CP Poraplot Q column (27.5 m × 0.32 µm; 10 µm; Varian) maintained at 100 °C and a He flow rate of 2.0 ml/min.

The raw δ13C values of each series of samples were corrected for fractionation effects between headspace and dissolved CO$_2$, as well for blank values and instrumental drift using standards of known composition (Lang et al., 2012). The amount of C was calculated by comparison with a dilution series of phthalic acid.

2.6. Radiocarbon analysis (F14C)

Radiocarbon analysis was carried out at the Laboratory for Ion Beam Physics of ETH Zürich, Switzerland using the MICADAS (mini carbon dating system) equipped with a gas ion source (Ruff et al., 2007; Synal et al., 2007) that allows direct introduction of CO$_2$ from the headspace into the gas ion source. Detailed descriptions about the instrumentation can be found elsewhere (Lang et al., 2013; Wacker et al., 2013). In brief, sample CO$_2$ was removed from the vials by flushing with He and diverting the output over a magnesium perchlorate water trap to a trap containing X13 zeolite molecular sieve, which adsorbs CO$_2$ at room temperature. After trapping, a valve was toggled to connect the trap to a gas tight syringe, and
The CO₂ was released by heating the zeolite to 450 °C. The amount of CO₂ in the syringe was detected pneumatically to allow dilution of the sample gas with He to 5 %, v/v CO₂ in He. This gas mixture was then pushed continuously out of the syringe into the ion source. Oxalic acid I (OX-1) gas was used as a modern standard (Stuiver and Polach, 1977) for normalization and fossil CO₂ gas served as a blank. The raw data output was processed with the BATS software (Wacker et al., 2010) so that the results are reported as fraction modern (F¹⁴C; Reimer et al., 2004) being corrected for instrumental background, standard normalization and evaluated for uncertainty. Further corrections for wet oxidation and purification of BPCAs are discussed below.

3. Results and Discussion

3.1. Isolation of individual BPCAs with HPLC

The first goal in method development was the definition of appropriate chromatographic conditions for providing sufficient amounts of the pure target compounds. BPCA concentrations in the total digests where determined following Wiedemeier et al. (2013). In both samples B6CA and B5CA represented ca. 80 % of the total quantified BPCA-C. For CSRA these two compounds provided the best conditions for successfully isolating and dating them. As a second step we injected as much as 1 µg C from each of the two target compounds and were still able to define robust retention times of the baseline separated peaks. Even though the column was slightly overloaded, no tailing of the target peaks to other fractions was observed (Fig. 1A) by re-injection of the eluent collected just before and after collection of the sample peak. The time window for fraction collection was set as narrow as possible to minimize the amount of potential co-eluting extraneous compounds and, especially, column bleed. Next to the quantified BPCAs a suite of other peaks are present (Fig 1A). These were other by-products of the digestion and were most likely nitrated BPCAs (Ziolkowski and Druffel, 2009b). We isolated B5CA and B6CA fractions from both process standards, the fossil and modern char, in 3 replicates, respectively. As a preliminary assessment of C₁₅, aliquots of the collected fractions were re-injected; this did not show any UV-detectable contaminants (Fig. 1B). Fractions were typically collected and combined from 20 to 30 repeated injections. Sample recovery varied between 50 and 84% (Table 1). Losses might have occurred during fraction collection or during transfer and concentration of the individual fractions. We did not detect significant amounts of the target compounds in fractions collected subsequently after the time window for B6CA or B5CA, which suggests that no significant tailing occurred after passing the detector and before the fraction collector. As we considered it more important to avoid the collection of other peaks eluting shortly after
the target compounds, we did not try to optimize the recovery widening the collection window, as soon as recovery exceeded 50%. Isotopic fractionation effects over the chromatographic peak were not expected for the 14C content (Zencak et al., 2007). This can be explained by the fact that 14C values are corrected for isotopic fractionation, which is expected to occur during AMS analysis. It is also possible that losses occurred during the transfer and concentration of the collected sample volumes. Up to 15 ml of that aqueous solution had to be reduced to a final volume of 2 ml, resulting in a high concentration of H$_3$PO$_4$ as only water and MeCN were volatilized under N$_2$ flow.

3.2. Wet oxidation and δ^{13}C values

The wet oxidation method was originally designed to oxidize organic acids (Lang et al. 2012; 2013) but proved to be also suitable for BPCAs. The oxidation efficiency was tested by oxidizing a known amount of a benzene pentacarboxylic acid standard, with recovery always $> 90\%$. Furthermore, no isotopic fractionation was observed when the δ^{13}C values of the oxidized standard material were compared with the reference values obtained with total combustion of the bulk sample powder using elemental analysis (EA)-IRMS. Attempts to further optimize the oxidation parameters by varying temperature and reaction time did not result in improvement of recovery. Wet oxidation of a mellitic acid standard gave consistent results compared with the B5CA standard.

The final δ^{13}C values of each isolated B5CA or B6CA sample, as well of the entire digestion extracts are listed in Table 1. The values are corrected for fractionation effects between the liquid and gas phase and for process and instrumental background of the wet oxidation procedure itself, as described by Lang et al. (2012). In brief, the process blank was determined using oxidized ultra pure water with similar volumes to the samples. The peak area of these blanks averaged 0.55 ± 0.09 V·s ($n = 3$), which corresponds to a value near the limit of detection of $\pm 0.2 \mu$g C. As these peaks were too small for reliable δ^{13}C values, the isotopic composition of the process blank was estimated indirectly by comparing the values for the oxidized phthalic acid standard samples with the known reference value. The δ^{13}C of the blanks is very sensitive, so it was individually calculated for each prepared series. The blanks were calculated to be $-14.1 \pm 1.1\%$ for the first and $-9.1 \pm 1.1\%$ for the second series. At first sight, there is a significant difference between the two blanks. It should be taken into account, however, that small differences detected with such small signals could lead to large differences in the δ^{13}C values for the blanks. The isotopic shift of ca. 5% for the blank results probably resulted from slightly changes in the quality of the chemicals in use, for instance the oxidizing reagent or the ultra pure water. This assumption is supported by the fact that the δ^{13}C values for the fire-derived compounds from the fossil and modern char showed no
significant difference after being corrected for the blank value for the wet oxidation procedure (Table 1). The BPCAs had slightly lower δ^{13}C values than the total digests (Fig. 2), while B5CA was more negative than B6CA. These small differences may be the result of inhomogeneity of the parent material. Another explanation might be an incomplete collection of the chromatographic peak, as δ^{13}C values are much more sensitive to fractionation effects than F^{14}C values (Zencak et al., 2007). The overall reproducibility (1σ) was ≤ 0.7‰. Even if this is slightly higher than the reported precision for the chemical oxidation method (≤ 0.4 ‰, Lang et al., 2012), the values are still satisfyingly accurate. With this technique, only a very small part of the isolated samples was used for stable isotope analysis in order to assure large enough samples for the AMS analysis. More accurate results could potentially be achieved by isolating a separate sample dedicated only to δ^{13}C using a GasBench device.

For the modern charcoal, we compared the isotopic composition of total digests and compound-specific δ^{13}C values with data from Yarnes et al. (2011), who successfully performed continuous flow 13C analysis after separation of BPCAs using a laborious 2 h ion exchange chromatography method. The values of Yarnes et al. (2011) are shown in Fig. 2 for direct comparison with our results. Their results for B5CA and B6CA from the modern char were within the error of our results. Furthermore, we obtained values for the BPCA extract of the modern char comparable to their value obtained using EA-IRMS analysis with the bulk sample. Compared with our distinct results the reported values by Yarnes et al. (2011) were systematically shifted by a value as small as -0.5‰, which is still in the range of the precision of both studies. This comparison demonstrates that our method for analyzing the δ^{13}C values of BPCAs is of high quality and can be performed on a very small aliquot of a sample whose main part is needed for CSRA.

3.3. Assessment of extraneous carbon

As mentioned above, radiocarbon analysis is more sensitive to the addition of extraneous C than δ^{13}C analysis (e.g. Shah and Pearson, 2007; Ziolkowski and Druffel, 2009a). It is therefore mandatory to minimize and precisely determine the contribution from C_{ex} to carry out an appropriate blank correction and obtain reliable radiocarbon values. Generally speaking, a measured F^{14}C value is composed of a contribution from both the compound of interest and from C_{ex}. This can be expressed with the following mass balance equation:

$$F_T \cdot C_T = F_S \cdot C_S + F_{ex} \cdot C_{ex}$$ \hspace{1cm} (1)$$

Where F is the F^{14}C value and C the amount of carbon in µg. The subscript T refers to total as measured, S to sample and ex to extraneous. In order to solve the equation for F_S, the amount and radiocarbon content of C_{ex} need to be determined beforehand, given that $C_S = C_T - C_{ex}$.

There are several possible sources of contaminating C added to the sample. Considering the entire laboratory protocol, it might be taken up during the extraction and cleaning procedure (C\textsubscript{chemistry}), the HPLC isolation (C\textsubscript{HPLC}), the wet oxidation procedure (C\textsubscript{ox}) and finally during the AMS analysis itself (C\textsubscript{AMS}). Accordingly C\textsubscript{ex} can be expressed as a sum of the following components: C\textsubscript{ex} = C\textsubscript{chemistry} + C\textsubscript{HPLC} + C\textsubscript{ox} + C\textsubscript{AMS}. The most straightforward way to trace back to C\textsubscript{ex} is to start at the end of the laboratory protocol, going back to the first steps.

3.3.1. C\textsubscript{AMS}

The AMS instrumental background is routinely determined during each measurement campaign. As mentioned above, reported values are normalized using the results of small scale Ox-I standards and are corrected for small scale AMS blanks using the BATS software (Wacker et al., 2010). Because of this, C\textsubscript{AMS} is not discussed further here. Accordingly, the subscript T (F14C\textsubscript{T}, C\textsubscript{T}) indicates in the following that the raw values had already been corrected with the BATS software.

3.3.2. C\textsubscript{ox}

The contribution of C\textsubscript{ex} added during wet oxidation was calculated indirectly using two standards of known radiocarbon content (14C-free phthalic acid and modern sucrose). With this method it is possible to assess separately two contaminant fractions. A detailed description of the method is given by Lang et al. (2013). As we adopted the approach for the assessment of C\textsubscript{chemistry} and C\textsubscript{HPLC}, further information is given in the following section.

For the samples measured during the first campaign, we determined a small influence from a modern C\textsubscript{ox} source, corresponding to 0.13 ± 0.04 µg C (n = 5), whereas the contribution from radiocarbon-dead C\textsubscript{ox} corresponded to 0.85 ± 0.44 µg C (n = 5). In combination, this resulted in a total blank of 0.97 ± 0.44 µg C with a F14C value of 0.13 ± 0.07. For the second measurement campaign, we were able to reduce the amount of C\textsubscript{ox} via 0.07 ± 0.03 µg C modern C\textsubscript{ox} and 0.45 ± 0.43 µg C of radiocarbon-dead material, i.e. a total of 0.52 ± 0.44 µg C\textsubscript{ox} with 0.14 ± 0.13 F14C. Evaluation of the first data set pointed to some sources of C\textsubscript{ox} that could easily be reduced, especially for the reagent used for the wet oxidation. The reagent was recrystallized 2x in water before use during the second campaign. This resulted in a reduction of radiocarbon-dead C\textsubscript{ox} of ca. 0.5 µg C per sample, while the average F14C of C\textsubscript{ox} remained comparable with the F\textsubscript{ox} determined for the first campaign. The correction for C\textsubscript{ox} was applied to all samples before determining C\textsubscript{chemistry} and C\textsubscript{HPLC}. The corrected values are indicated as C\textsubscript{T} and F14C\textsubscript{T} in the following.

3.3.3. C\textsubscript{chemistry} and C\textsubscript{HPLC}

...
Initially, we directly collected and analyzed $C_{\text{chemistry}}$ and C_{HPLC}. Blank samples were run through the entire laboratory protocol except for radiocarbon dating. Another set of blanks was produced, performing only the HPLC step, omitting the extraction procedure. Because the total amount of extraneous C was very low, the number of injections and the duration of the fraction collection window were increased vs. regular sample fraction collection. The amount of C and its δ^{13}C values were determined by analyzing all material with the GasBench device (Table 2), which gives better accuracy than the GC option described above. For one sample, it was not possible to obtain a reliable δ^{13}C value, as the sample size was too small. The average blank that passed both extraction and HPLC contained 0.23 ± 0.12 µg $C_{\text{chemistry}} + \text{HPLC}$ ml$^{-1}$ (n = 2), whereas C_{HPLC} showed an average of 0.22 ± 0.04 µg ml$^{-1}$ (n = 5). This showed that the chemical extraction process ($C_{\text{chemistry}}$) did not significantly contribute to the amount of the sum of C_{ex} and could be assumed to be zero. Most likely, if any $C_{\text{chemistry}}$ were present, it would again be removed during the HPLC purification step to a level below the detection limit. The isotopic signatures of the C_{HPLC} replicates showed comparable values, within a relatively larger error due to the small sample sizes. The δ^{13}C value of C_{HPLC} averaged -29.5 ± 1.3‰ (Table 2), implying that the source of C_{ex} remained constant and that no unexpected and uncontrolled addition of C_{ex} occurred. Separate analysis of the aqueous eluent before usage showed that this was most probably the main source of C_{HPLC}, as it already contained 0.3 ± 0.1 µg C/ml. Future efforts to reduce C_{HPLC} should therefore focus on the mobile phase in the HPLC step.

A strong relationship (R^2 0.91) existed between the collected volumes of C_{HPLC} and their C content (Fig. 3). The intercept of near zero suggests that any constant background was absent, while the slope (0.22 µg C ml$^{-1}$) of the linear regression represented the amount of C_{HPLC} eluting per ml eluent. Therefore, multiplying this value by the volume collected for a specific sample should give a preliminary estimate of C_{HPLC} for an individual sample, enabling calculation of F_{HPLC} for each sample. However, we discovered that this estimate was not accurate enough: calculated values of C_{HPLC} for individual samples ranged between 0.9 and 2.1 µg C, resulting in reasonable estimates for F_{HPLC} for some samples (Supplementary material), but also in non-natural values of $F_{\text{HPLC}} > 2$ for others. Interestingly, the averaged values for F_{HPLC} for each process standard were at the same level of a blank with a modern radiocarbon value (F14C ≈ 1).

It is also possible to determine the blank contribution (C_{HPLC}) and its radiocarbon signature (F_{HPLC}) indirectly. For this approach, C_{ex} needs to be assumed as a constant amount of carbon being added to each sample during sample preparation. It is based on the theoretical assumption that the F_{ex} would be composed of two pools characterized by opposite 14C content (i.e. modern and 14C-free). The combination of the results from two standards with
that with opposite 14C content then allows a mathematical solution for both unknowns, here C_{HPLC} and F_{HPLC}. It is a common approach to determine a theoretical contribution from modern C_s (F^{14}C = 1) by use of a radiocarbon-dead (F^{14}C = 0) process standard and vice versa (Shah and Pearson, 2007; Ziolkowski and Druffel, 2009a; Lang et al., 2013). For this, Eq. 1 was re-arranged and modified:

$$C_{\text{HPLC}} = \frac{(F^T \cdot C^T - F_S \cdot C_S)}{(F_{\text{HPLC}} - F_S)} \quad (2)$$

Accordingly, a C_{HPLC} value for each replicate of fossil char was calculated assuming $F_{\text{HPLC}} = 1$ and similarly for the modern char, assuming $F_{\text{HPLC}} = 0$ (Table 3). To solve the equation the reference values from the bulk powder were used as F_S. The average modern C_{HPLC} based on the individual B5CAs and B6CAs from the fossil charcoal, was $1.4 \pm 0.5 \, \mu g \, C \, (n = 5; \, \text{Table 3})$. In contrast, the BPCAs isolated from the modern char sample were hardly affected (Fig. 3), resulting in an average contribution of 14C-free C_{HPLC} of $0.2 \pm 0.4 \, \mu g \, C$.

While the subdivision of the amount of blank C into two pools is a convenient mathematical concept, in nature it is more likely that there is a single C pool with a distinct 14C signature displaying a mean value of all various compounds. In order to determine more realistic values, C_{es} and F_{es} can be combined by addition of the two theoretical C_{es} values and by calculating the weighted average of the two F_{es} values:

$$F_{es} = \frac{(F_{\text{modern}} \cdot C_{\text{modern}} + F_{\text{dead}} \cdot C_{\text{dead}})}{(C_{\text{modern}} + C_{\text{dead}})} \quad (3)$$

While the subscript ex can be substituted with the subscript describing the respective part of the sample preparation. Here, it resulted in $C_{\text{HPLC}} = 1.6 \pm 0.7 \, \mu g \, C$ with an average radiocarbon content F_{HPLC} of $0.90 \pm 0.50 \, F^{14}$C. This amount was satisfyingly low for samples with $> 15 \, \mu g \, C$. Consequently, a fossil source for C_{HPLC} can be excluded; nevertheless, it is hardly possible to directly identify the origin of C_{HPLC}. A significant change of F_{HPLC} during later measurements is though a clear indication for additional contribution of C_{HPLC}, in general.

Fig. 3 illustrates the size-dependent relationship of the radiocarbon content of the samples not corrected for C_{HPLC} vs. the theoretically modeled F_{HPLC} deduced from the mixture of a C_S with varying sample size and the constant C_{HPLC}. Note that the given data set does not show a significant dependence between the amounts of repeated injections (i.e. the amount of collected mobile phase) and C_{HPLC}. However, the opposite was concluded after direct analysis of C_{HPLC} (Fig. 3). This apparent contradiction can be attributed to the fact that the process samples were only collected over 20 to 30 injections, with a total of 4-12 ml (but mostly 6-8 ml), as opposed to the volume range of 8 up to 40 ml collected for the C_{HPLC} tests. In short, this volume range was too small for detection of a significant size dependence of C_{HPLC}. The
correct radiocarbon content (F_S) values from the individual samples are listed in Table 3.

There was no evidence for a significant difference in the F^{14}C values between the B5CAs and B6CAs. Hence, replicate analyses of B5CAs and B6CAs from the same process standard were taken as equal. The 5 replicates of the modern charcoal sample give a mean F^{14}C value of 1.142, with a standard deviation of 0.025, i.e. a precision of 2.2%. This value mirrors both the F^{14}C of the digest (ETH-49860.1.1) and the reference analysis of the bulk material (ETH-50458). The individual samples exhibited values with a slightly greater uncertainty that in turn depended on the sample size and lower counting statistics. The largest sample containing 27 µg C had a precision of 2.9% and the smallest (16 µg C) a precision of 4.5%. Likewise, the F_S for the largest sample (ETH-49868.1.1) was also the one closest to the reference value. The same was true for the fossil charcoal standard being depleted in 14C, even if no size dependent increase in precision is given for these duplicate values. The average F_S from 5 individual measurements was 0.001 ± 0.032. Samples with < 15 µg C were not analyzed, as demonstrated by Birkholz et al. (2013) that samples designated for CSRA and < 10 µg C are usually affected by C_{es} to such an extent that no reliable results can be obtained. However, the data here demonstrate that sample amounts of 25 to 35 µg C are suitable for high precision analysis. Additional replicate analyses are still recommended so that possible outliers can be easily identified. In summary, the given uncertainty in an individual measurement is satisfactory for C turnover studies or C source apportion. For precise dating purposes a higher precision is usually required. Indeed, there is room for further minimization of C_{es}, especially during the HPLC isolation procedure. Comparing the background level of organic C in the ultra-pure water used (i.e. in the aqueous HPLC solvent) with published references indicates that the system used for this study could be improved with better maintenance. Lang et al. (2012) reported that not more than 0.04 µg C/ml were detected in the aquatic mobile phase. In contrast, a concentration of up to 0.3 µg C/ml was measured for the eluents used here.

4. Conclusions

We present a method to purify individual BPCAs as compound-specific biomarkers for BC, followed by the determination of δ^{13}C and F^{14}C. The combination of two measurements on the same sample reduces the efforts specified by an isolation protocol for the particular analysis. Furthermore, knowing both the δ^{13}C and F^{14}C values for a sample helps interpret the results with respect to the impact of contamination that might be difficult to detect, especially when they have a different δ^{13}C value from the sample of interest. Another benefit is the possibility of monitoring the development of the general C_{es} background in an easy and cost effective way. C content and its δ^{13}C value should give enough information and help avoid
expensive radiocarbon analysis of contaminated samples. Finally the wet oxidation method avoids the problems encountered in the combustion of H₃PO₄-rich sample residues.

A constant addition of extraneous C to the isolated samples was identified. Nevertheless, a size dependent component C_{ex} cannot be excluded. This is especially true for much larger samples (> 50 µg C) that need to be isolated with a greater extent of injections (e.g. 100-150 injections to yield ca. 100 µg BPCA C). Contamination of 1.6 ± 0.2 µg C, with 14C 0.90 ± 0.14, was calculated. We have shown that the precision of individual measurements of samples with > 15 µg C is adequate for studies aimed at determining C turnover or source apportioning in soils and sediments. In addition, our data show that there is potential for also applying the method for dating purposes. Samples isolated in replicates each containing > 25 µg C should give values precise enough for an age determination of, for example, combustion residues on pottery or other samples with very fine charcoal that cannot be analyzed directly or BC that is mixed with other OM. Based on the experience from study, we recommend that process standards and blanks are determined regularly, as it is possible that C concentration in chemicals and/or solvent changes through time.

The method can also be applied to other marker compounds (e.g. B4CA or B3CA), although it might require minor tuning of the HPLC method to obtain a clean chromatographic separation of the target compounds. Additional improvements could include the use of a HPLC column with more capacity to reduce the number of injections required for isolation of sufficient material. This might lead to less C_{ex}, although the flow rate would need to be increased.

5. Author contributions

The study was proposed by M.G., M.P.W.S., M.W.I.S., R.H.S. and S.M.B.; M.G. and M.P.W.S. carried out the experiments and data analysis. D.B.W., S.Q.L. and R.H.S. provided technical expertise for method development. I.H. carried out AMS analysis with solid graphite targets.

Acknowledgements

We would like to thank two anonymous reviewers for their constructive comments. Funding support from Swiss National Science Foundation (SNF) project Nr 200021-119950 / 200020-13484 and Nr 200020-131922, and also University of Zurich Forschungskredit Nr 57061004 Fellowship is gratefully acknowledged. We thank M. Hilf, C. McIntyre and L. Wacker for assistance with HPLC and AMS measurements. T. Eglinton generously donated funding for
the AMS measurements. We also thank P. Ascough and M. Bird for donating the archaeological charcoal.

Associate Editor – M.J. Simpson

References

Figure captions

Fig. 1. HPLC-DAD chromatogram from a 5 µl injection of a BPCA extract of modern char for fraction collection (A), and HPLC-DAD chromatograms of aliquots of purified B6CA and B5CA fractions detected at 216 and 240nm (B). Time windows for single peak collection of B6CA (B6) and B5CA (B5) are highlighted in the gray boxes.

Fig. 2. δ^{13}C values of individual B5CA and B6CA and of the whole BPCA digest of fossil (left) and modern char (right) measured in this study, and as published by Yarnes et al. (2011) for the modern char.

Fig. 3. Mass of HPLC blank vs. volume of collected eluent.

Fig. 4. Radiocarbon values for B5CA and B6CA isolated from the modern (left) and fossil char (right). The given error is composed of corrections for instrumental AMS background and the blank for wet oxidation. The solid gray line represents an idealized line for the mixture of the real 14C value of sample and the determined mean external contamination.
Figure 1
Figure 2
Figure 3

The graph shows a linear relationship between mass (µg C) and volume (mL) with the equation:

\[y = 0.22x - 0.07 \]

and the coefficient of determination \(R^2 = 0.91 \).
Figure 4
Table 1
Isolation of B5CA and B6CA from two process standards with HPLC, recovered mass as analyzed with HPLC and GC-IRMS and corresponding δ¹³C values.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Compound</th>
<th>HPLC Injection µg C</th>
<th>Recovery %</th>
<th>GC-IRMS µg C</th>
<th>δ¹³C (%)</th>
<th>Yarnes et al., 2011 δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Digest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fossil char</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6CA</td>
<td>20×5µl</td>
<td>22.3</td>
<td>76%</td>
<td>29.3</td>
<td>-25.5 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>B6CA</td>
<td>30×5µl</td>
<td>35.2</td>
<td>80%</td>
<td>39.7</td>
<td>-24.5 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>Avg. B6CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-25.0 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>B5CA</td>
<td>20×5µl</td>
<td>16.3</td>
<td>55%</td>
<td>17.2</td>
<td>-26.9 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>B5CA</td>
<td>25×5µl</td>
<td>20.4</td>
<td>55%</td>
<td>21.7</td>
<td>-26.4 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>B5CA</td>
<td>30×5µl</td>
<td>21.8</td>
<td>49%</td>
<td>22.9</td>
<td>-26.8 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>Avg. B5CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-26.7 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Modern char</td>
<td>Digest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-27.4^d</td>
</tr>
<tr>
<td>B6CA</td>
<td>20×5µl</td>
<td>19.9</td>
<td>74%</td>
<td>23.3</td>
<td>-27.9 ± 0.3</td>
<td>-28.24 ± 0.36</td>
</tr>
<tr>
<td>B6CA</td>
<td>25×5µl</td>
<td>28.6</td>
<td>84%</td>
<td>32.5</td>
<td>-28.1 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>B6CA</td>
<td>25×5µl</td>
<td>25.9</td>
<td>76%</td>
<td>31.1</td>
<td>-27.1 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>Avg. B6CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-27.7 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>B5CA</td>
<td>20×5µl</td>
<td>19.7</td>
<td>50%</td>
<td>25.8</td>
<td>-28.4 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>B5CA</td>
<td>25×5µl</td>
<td>30.6</td>
<td>62%</td>
<td>29.5</td>
<td>-27.7 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>B5CA</td>
<td>25×5µl</td>
<td>25.3</td>
<td>52%</td>
<td>28.1</td>
<td>-29.0 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>Avg. B5CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-28.4 ± 0.6</td>
<td>-28.71 ± 0.36</td>
</tr>
</tbody>
</table>

^a Determined by comparing sample peak areas with those from a dilution series of BPCA standards with known concentration; ^b determined on amount of CO₂ generated during oxidation in the headspace of the vials, by comparing peak areas with those of a series of standards of known concentration; ^c determined with ion chromatography IRMS; ^d bulk sample analyzed with EA-IRMS.

Table 2
Direct assessment of C_HPLC (n.a.: not analyzed).

<table>
<thead>
<tr>
<th>Sample</th>
<th>HPLC Collected ml</th>
<th>C_HPLC µg C</th>
<th>GC-IRMS µg /ml</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_chem.+HPLC</td>
<td>20</td>
<td>0.23 ± 0.12</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>C_HPLC</td>
<td>40</td>
<td>9.7</td>
<td>0.24</td>
<td>-28.6 ± 0.1</td>
</tr>
<tr>
<td>C_HPLC</td>
<td>40</td>
<td>8.7</td>
<td>0.22</td>
<td>-28.5 ± 0.1</td>
</tr>
<tr>
<td>C_HPLC</td>
<td>8</td>
<td>2.2</td>
<td>0.28</td>
<td>n.a.</td>
</tr>
<tr>
<td>C_HPLC</td>
<td>30</td>
<td>5.2</td>
<td>0.17</td>
<td>-29.8 ± 0.1</td>
</tr>
<tr>
<td>C_HPLC</td>
<td>30</td>
<td>5.8</td>
<td>0.19</td>
<td>-31.4 ± 0.1</td>
</tr>
<tr>
<td>Avg. C_HPLC</td>
<td></td>
<td>0.22 ± 0.04</td>
<td>-29.5 ± 1.3</td>
<td></td>
</tr>
</tbody>
</table>

^a Determined on amount of CO₂ generated during oxidation in the headspace of the vials, by comparing peak areas with those of a series of standards of known concentration; ^b n = 2.
Table 3

Amount and radiocarbon content of isolated process standards B5CA and B6CA, calculated amount of external C \((C_{ex})\) added to the related sample and residual \(^{14}\text{C}\) values after correction for the blank \((F_S)\).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calculated</th>
<th>Corrected values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F_T) ((^{14}\text{C}))^a</td>
<td>(C_T) ((\mu\text{g C}))</td>
</tr>
<tr>
<td>Fossil char</td>
<td>Bulk(^c)</td>
<td>0.003 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Digest</td>
<td>0.010 ± 0.002</td>
</tr>
<tr>
<td>B6CA</td>
<td>0.094 ± 0.004</td>
<td>23.1 ± 0.5</td>
</tr>
<tr>
<td>B6CA</td>
<td>0.040 ± 0.003</td>
<td>29.0 ± 0.5</td>
</tr>
<tr>
<td>B5CA</td>
<td>0.079 ± 0.006</td>
<td>13.0 ± 0.5</td>
</tr>
<tr>
<td>B5CA</td>
<td>0.068 ± 0.005</td>
<td>16.0 ± 0.5</td>
</tr>
<tr>
<td>B5CA</td>
<td>0.127 ± 0.007</td>
<td>14.5 ± 0.5</td>
</tr>
</tbody>
</table>

Modern extraneous C \((^{14}\text{C} = 1)\) addition: 1.4 ± 0.5 Avg. \(C_{ex}\)

Modern char		1.142 ± 0.004	ETH-50458		
	Digest	1.143 ± 0.020	ETH-49860		
B6CA	1.151 ± 0.025	16.2 ± 0.5	-0.1 ± 0.5	1.162 ± 0.074	ETH-50462
B6CA	1.093 ± 0.021	18.5 ± 0.5	0.8 ± 0.5	1.102 ± 0.056	ETH-49864
B6CA	1.124 ± 0.020	20.9 ± 0.5	0.3 ± 0.5	1.132 ± 0.056	ETH-50463
B5CA	1.145 ± 0.019	27.6 ± 0.5	-0.1 ± 0.6	1.152 ± 0.034	ETH-49868
B5CA	1.150 ± 0.024	16.8 ± 0.5	-0.1 ± 0.5	1.161 ± 0.071	ETH-50465

Radiocarbon dead extraneous C \((^{14}\text{C} = 1)\) addition: 0.2 ± 0.4 Avg. \(C_{ex}\)

\(^a\) Subscript \(T\) indicates that values were corrected for instrumental background using the BATS program (Wacker, 2010) and for the wet oxidation procedure (Lang et al., 2013);

\(^b\) Subscript \(S\) indicates that values were corrected for mean modern or radiocarbon dead extraneous carbon addition occurring during the entire laboratory protocol. Please note that the fractions of ‘bulk’ and ‘extract’ required less corrections than those isolated by HPLC.

\(^c\) \(^{14}\text{C}\) values from bulk sample material were corrected for instrumental background using BATS software.
Supplementary

A. Correction for wet oxidation procedure

A. Tables

Table A.1: Amounts and radiocarbon contents of the isolated process standards of the wet oxidation – phthalic acid and sucrose with the corresponding calculated amount of external C (C_{ex}) added to the standard, and the residual F\(^{14}\)C values after correction for the blank (F_{b}).

<table>
<thead>
<tr>
<th>Standard</th>
<th>F_T ($F^{14}\text{C})$</th>
<th>C_T (µg C)</th>
<th>C_{ex} (µg C)</th>
<th>F_S ($F^{14}\text{C})$</th>
<th>Lab code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st campaign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phthalic acid</td>
<td>0.0140 ± 0.0002</td>
<td>12.4 ± 0.5</td>
<td>0.14 ± 0.03</td>
<td>0.004 ± 0.004</td>
<td>ETH-49846.11.1</td>
</tr>
<tr>
<td>Sucrose</td>
<td>1.018 ± 0.012</td>
<td>17.4 ± 0.5</td>
<td>0.58 ± 0.88</td>
<td>1.070 ± 0.050</td>
<td>ETH-49845.2.1</td>
</tr>
<tr>
<td>2nd campaign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phthalic acid</td>
<td>0.0243 ± 0.0007</td>
<td>3.7 ± 0.5</td>
<td>0.08 ± 0.03</td>
<td>0.005 ± 0.012</td>
<td>ETH-49846.23.1</td>
</tr>
<tr>
<td>Sucrose</td>
<td>1.0016 ± 0.0012</td>
<td>11.6 ± 0.5</td>
<td>0.57 ± 0.78</td>
<td>1.042 ± 0.066</td>
<td>ETH-49845.1.1</td>
</tr>
</tbody>
</table>

a Subscript T indicates that values have been corrected for instrumental background using the program BATS (Wacker, 2010) and for the wet oxidation procedure (Lang et al., 2013), if required.

b The radiocarbon content of 1.053 ± 0.03 F\(^{14}\)C was determined on the powdered phthalic acid standard by conventional AMS methods.

c The radiocarbon content of ≤ 0.0025 F\(^{14}\)C was determined on the powdered sucrose standard by conventional AMS methods.

A. Figure caption

Figure A.1: Radiocarbon values of phthalic acid (above) and sucrose (below) after the wet oxidation procedure of both campaigns (I left, and II right). The given error bars derive only from corrections of instrumental AMS background and counting statistics. The solid grey line represents an idealized line of the mixture of the F\(^{14}\)C value of the process standard and the mean external contamination of modern ($F^{14}\text{C} = 1$, Phthalic acid) or radiocarbon dead ($F^{14}\text{C} = 0$, Sucrose) carbon.
Figure A1
B. Direct assessment of C_{chemistry}/C_{HPLC}

B. Table

Table B 1: Amounts and radiocarbon contents of isolated process standards B5CA and B6CA, the volume of collected eluent of each sample and the calculated amount of external C (C_{ex}) and its radiocarbon content (F_{ex}), assuming that a C_{ex} of 0.22 ± 0.04 µg ml⁻¹ elutes with the mobile phase.

<table>
<thead>
<tr>
<th>Sample</th>
<th>F<sub>T</sub> (F<sup>14</sup>C) *</th>
<th>C<sub>T</sub> (µg C)</th>
<th>Collected</th>
<th>Calculated</th>
<th>Lab code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V<sub>el</sub> (ml)</td>
<td>C<sub>ex</sub> (µg C)</td>
<td>F<sub>ex</sub> (F<sup>14</sup>C)</td>
</tr>
<tr>
<td>Fossil char B6CA</td>
<td>0.094 ± 0.004</td>
<td>23.1 ± 0.2</td>
<td>4</td>
<td>0.9</td>
<td>2.4</td>
</tr>
<tr>
<td>B6CA</td>
<td>0.040 ± 0.003</td>
<td>29.0 ± 0.3</td>
<td>9</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>B5CA</td>
<td>0.079 ± 0.006</td>
<td>13.0 ± 0.2</td>
<td>4</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>B5CA</td>
<td>0.068 ± 0.005</td>
<td>16.0 ± 0.2</td>
<td>5</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>B5CA</td>
<td>0.127 ± 0.007</td>
<td>14.5 ± 0.3</td>
<td>12</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>F<sub>ex</sub></td>
<td>1.1</td>
</tr>
<tr>
<td>Modern char B6CA</td>
<td>1.151 ± 0.025</td>
<td>16.2 ± 0.2</td>
<td>6</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>B6CA</td>
<td>1.093 ± 0.021</td>
<td>18.5 ± 0.2</td>
<td>8</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>B6CA</td>
<td>1.124 ± 0.020</td>
<td>20.9 ± 0.2</td>
<td>8</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B5CA</td>
<td>1.183 ± 0.023</td>
<td>22.0 ± 0.3</td>
<td>5</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>B5CA</td>
<td>1.145 ± 0.019</td>
<td>27.6 ± 0.3</td>
<td>5</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>B5CA</td>
<td>1.150 ± 0.024</td>
<td>16.8 ± 0.2</td>
<td>6</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>F<sub>ex</sub></td>
<td>1.0</td>
</tr>
</tbody>
</table>

* Subscript T indicates that values have been corrected for instrumental background using the program BATS (Wacker, 2010) and for the wet oxidation procedure (Lang et al., 2013).