Header

UZH-Logo

Maintenance Infos

Neutrino physics with multi-ton scale liquid xenon detectors


Baudis, L; Ferella, A; Kish, A; Manalaysay, A; Undagoitia, T Marrodán; Schumann, M (2014). Neutrino physics with multi-ton scale liquid xenon detectors. Journal of Cosmology and Astroparticle Physics, 2014(01):044.

Abstract

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~ 2 × 10-48 cm2 and WIMP masses around 50 GeVṡc-2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~ 6 GeVṡc-2 to cross sections above ~ 4 × 10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6 × 1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

Abstract

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~ 2 × 10-48 cm2 and WIMP masses around 50 GeVṡc-2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~ 6 GeVṡc-2 to cross sections above ~ 4 × 10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6 × 1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

Statistics

Citations

Dimensions.ai Metrics
29 citations in Web of Science®
30 citations in Scopus®
21 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

38 downloads since deposited on 21 Nov 2014
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Date:2014
Deposited On:21 Nov 2014 07:43
Last Modified:14 Feb 2018 21:59
Publisher:IOP Publishing
ISSN:1475-7516
OA Status:Green
Publisher DOI:https://doi.org/10.1088/1475-7516/2014/01/044

Download

Download PDF  'Neutrino physics with multi-ton scale liquid xenon detectors'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 792kB
View at publisher