Header

UZH-Logo

Maintenance Infos

Adult-born granule cells mature through two functionally distinct states


Brunner, János; Neubrandt, Máté; Van-Weert, Susan; Andrási, Tibor; Kleine Borgmann, Felix B; Jessberger, Sebastian; Szabadics, János (2014). Adult-born granule cells mature through two functionally distinct states. eLife, 3:e03104.

Abstract

Adult-born granule cells (ABGCs) are involved in certain forms of hippocampus-dependent learning and memory. It has been proposed that young but functionally integrated ABGCs (4-weeks-old) specifically contribute to pattern separation functions of the dentate gyrus due to their heightened excitability, whereas old ABGCs (>8 weeks old) lose these capabilities. Measuring multiple cellular and integrative characteristics of 3- 10-week-old individual ABGCs, we show that ABGCs consist of two functionally distinguishable populations showing highly distinct input integration properties (one group being highly sensitive to narrow input intensity ranges while the other group linearly reports input strength) that are largely independent of the cellular age and maturation stage, suggesting that 'classmate' cells (born during the same period) can contribute to the network with fundamentally different functions. Thus, ABGCs provide two temporally overlapping but functionally distinct neuronal cell populations, adding a novel level of complexity to our understanding of how life-long neurogenesis contributes to adult brain function.

Abstract

Adult-born granule cells (ABGCs) are involved in certain forms of hippocampus-dependent learning and memory. It has been proposed that young but functionally integrated ABGCs (4-weeks-old) specifically contribute to pattern separation functions of the dentate gyrus due to their heightened excitability, whereas old ABGCs (>8 weeks old) lose these capabilities. Measuring multiple cellular and integrative characteristics of 3- 10-week-old individual ABGCs, we show that ABGCs consist of two functionally distinguishable populations showing highly distinct input integration properties (one group being highly sensitive to narrow input intensity ranges while the other group linearly reports input strength) that are largely independent of the cellular age and maturation stage, suggesting that 'classmate' cells (born during the same period) can contribute to the network with fundamentally different functions. Thus, ABGCs provide two temporally overlapping but functionally distinct neuronal cell populations, adding a novel level of complexity to our understanding of how life-long neurogenesis contributes to adult brain function.

Statistics

Citations

10 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

15 downloads since deposited on 27 Feb 2015
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:2014
Deposited On:27 Feb 2015 09:55
Last Modified:08 Dec 2017 08:20
Publisher:eLife Sciences Publications Ltd.
ISSN:2050-084X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.7554/eLife.03104
PubMed ID:25061223

Download

Download PDF  'Adult-born granule cells mature through two functionally distinct states'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher