No association between the ALDH2 promoter polymorphism rs886205, alcohol dependence, and risky alcohol consumption in a German population

Nassab, Mani Haschemi; Rhein, Mathias; Heese, Peter; Glahn, Alexander; Frieling, Helge; Linnebank, Michael; Bleich, Stefan; Kornhuber, Johannes; Heberlein, Annemarie; Grallert, Harald; Peters, Annette; Rawal, Rajesh; Strauch, Konstantin; Hillemacher, Thomas

DOI: https://doi.org/10.1097/YPG.0000000000000073

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-101285
Published Version

Originally published at:
Nassab, Mani Haschemi; Rhein, Mathias; Heese, Peter; Glahn, Alexander; Frieling, Helge; Linnebank, Michael; Bleich, Stefan; Kornhuber, Johannes; Heberlein, Annemarie; Grallert, Harald; Peters, Annette; Rawal, Rajesh; Strauch, Konstantin; Hillemacher, Thomas (2015). No association between the ALDH2 promoter polymorphism rs886205, alcohol dependence, and risky alcohol consumption in a German population. Psychiatric Genetics, 25(1):41-42.
DOI: https://doi.org/10.1097/YPG.0000000000000073
No association between the ALDH2 promoter polymorphism rs886205, alcohol dependence, and risky alcohol consumption in a German population

Mani Haschemi Nassaba,b, Mathias Rheinb, Peter Heesec, Alexander Glahna, Helge Friela,b, Michael Linnebankd, Stefan Bleicha, Johannes Kornhubere, Annemarie Heberleina, Harald Grallertf,g, Annette Petersg, Rajesh Rawalh, Konstantin Strauchh,i and Thomas Hillemachera

Susceptibility to the negative effects of alcohol consumption, for example, headache, nausea, and flushing is associated with blood levels of toxic acetaldehyde, which is mainly eliminated by active aldehyde dehydrogenase 2 (ALDH2). A polymorphism in the coding region of the ALDH2 gene, rs671, causes loss of enzymatic activity and protection against alcohol dependence, but is predominantly present in East-Asian populations (Brennan \textit{et al}., 2004). In contrast to rs671, the noncoding \textit{ALDH2} promoter polymorphism rs886205 (A > G) appears in relevant frequency in different populations, including European, as a risk marker for alcohol-related carcinoma (Hashibe \textit{et al}., 2006), and is known to reduce \textit{ALDH2} gene transcription and promoter activity \textit{in vivo} and \textit{in vitro} (Kimura \textit{et al}., 2009).

In a previous longitudinal study with 82 alcohol-dependent patients and 34 controls of German descent, we detected different rs886205 alleles and genotype frequencies between the groups, but not reaching significance (allele frequency: $\chi^2 = 3.18$, $P = 0.074$ and genotype frequency: $\chi^2 = 2.89$, $P = 0.089$). We calculated that replication of this genetic effect in a larger cohort of at least 300 patients and controls would have sufficient power to confirm a potential impact of rs886205 on the associated risk for alcohol dependence ($\alpha = 0.05$; $1 - \beta = 0.83$).

Therefore, we genotyped marker rs886205 in 352 alcohol-dependent patients according to ICD-10 (Heese \textit{et al}., 2012) and two independent control cohorts that included 2742 (KORA S3) and 3175 (KORA S4) population-based controls. All individuals were of German descent and provided written informed consent. Genotype frequencies were in Hardy–Weinberg equilibrium and were as follows (patients/control KORA S3/control KORA S4): A/A = 66.5/68.9/68.5, A/G = 31.8/28.0/28.2, G/G = 1.7/3.3/3.1.

Neither genotype nor allele frequencies showed significant differences between patients and KORA S3 controls (genotype: $\chi^2 = 0.82$, $P = 0.365$; allele type: $\chi^2 = 0.11$, $P = 0.745$) and patients and KORA S4 controls (genotype: $\chi^2 = 0.60$, $P = 0.438$; allele type: $\chi^2 = 0.02$, $P = 0.888$).

To examine whether the rs886205 genotype might affect alcohol consumption (grams of ethanol per day) in alcohol-dependent patients and controls, we applied a logistic regression model using risky alcohol consumption as the dependent variable (male individuals > 30 g/day, female individuals > 20 g/day) and rs886205 genotype, age, and sex as independent variables. Although age and sex had a significant impact ($P < 0.0001$), the rs886205 genotype did not affect risky alcohol consumption in patients and controls ($P = 0.965$).

So far, an association between rs886205 and alcohol dependence was only investigated in East-Asian populations, with contradictory outcome, and biasing effects of strong linkage disequilibrium with rs671 (Harada \textit{et al}., 1999). It was also suggested that the role of the \textit{ALDH2} promoter polymorphism might vary across populations because of large differences in allelic frequencies between East-Asian and European populations (Kimura \textit{et al}., 2006).

Our findings show for the first time that the functional \textit{ALDH2} promoter polymorphism rs886205 does not affect risk for alcohol dependence and risky alcohol consumption in German populations.
Acknowledgements
Conflicts of interest
There are no conflicts of interest.

References

