Header

UZH-Logo

Maintenance Infos

Animal models of Epstein Barr virus infection - Zurich Open Repository and Archive


Chatterjee, Bithi; Leung, Carol Sze; Münz, Christian (2014). Animal models of Epstein Barr virus infection. Journal of Immunological Methods, 410:80-87.

Abstract

Epstein Barr virus (EBV) was the first human tumor virus to be identified. Despite 50years of research on this oncogenic virus, no therapeutic or prophylactic vaccine is available against this pathogen. In part, the development of such a vaccine is hampered by the lack of in vivo models for EBV infection and immune control. However, with the advent of mice with reconstituted human immune system components (HIS mice), certain aspects of EBV associated diseases and immune responses can be modeled in vivo. In this review, we will discuss the insights that can be gained from these experiments, and how immune system components can be manipulated to interrogate their function during EBV infection. Finally, we will compare EBV immunobiology in HIS mice to infection by EBV-related viruses in monkeys, and we will outline the strengths and weaknesses of these two in vivo models of EBV infection. Both of these models show great promise as a platform for preclinical EBV vaccine testing.

Abstract

Epstein Barr virus (EBV) was the first human tumor virus to be identified. Despite 50years of research on this oncogenic virus, no therapeutic or prophylactic vaccine is available against this pathogen. In part, the development of such a vaccine is hampered by the lack of in vivo models for EBV infection and immune control. However, with the advent of mice with reconstituted human immune system components (HIS mice), certain aspects of EBV associated diseases and immune responses can be modeled in vivo. In this review, we will discuss the insights that can be gained from these experiments, and how immune system components can be manipulated to interrogate their function during EBV infection. Finally, we will compare EBV immunobiology in HIS mice to infection by EBV-related viruses in monkeys, and we will outline the strengths and weaknesses of these two in vivo models of EBV infection. Both of these models show great promise as a platform for preclinical EBV vaccine testing.

Statistics

Citations

10 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

68 downloads since deposited on 09 Dec 2014
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:August 2014
Deposited On:09 Dec 2014 15:40
Last Modified:05 Apr 2016 18:35
Publisher:Elsevier
ISSN:0022-1759
Publisher DOI:https://doi.org/10.1016/j.jim.2014.04.009
PubMed ID:24815603

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 461kB
View at publisher
Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 358kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations