Header

UZH-Logo

Maintenance Infos

Cerebral oxygenation in patients with OSA: Effects of hypoxia at altitude and impact of acetazolamide


Ulrich, Silvia; Nussbaumer-Ochsner, Yvonne; Vasic, Irena; Hasler, Elisabeth; Latshang, Tsogyal D; Kohler, Malcolm; Muehlemann, Thomas; Wolf, Martin; Bloch, Konrad E (2014). Cerebral oxygenation in patients with OSA: Effects of hypoxia at altitude and impact of acetazolamide. Chest, 146(2):299-308.

Abstract

BACKGROUND: Sleep-disordered breathing may impair cerebral oxygenation in patients with OSA syndrome, in particular during altitude travel. We studied cerebral tissue oxygenation (CTO) at low and moderate altitude in patients with OSA and evaluated whether acetazolamide improved CTO.
METHODS: Eighteen patients with OSA living at < 600 m discontinued CPAP therapy during studies in Zurich (490 m) and during two sojourns of 3 days in the Swiss Alps (2 days at 1,860 m and 1 day at 2,590 m) separated by a 2-week washout period at < 600 m. Patients received acetazolamide (2 × 250 mg/d) or placebo at altitude in a randomized, double-blind, crossover design. Nocturnal polysomnography, including CTO monitoring by near-infrared spectroscopy (NIRS), was performed.
RESULTS: At 490 m, medians of CTO, peripheral oxygen saturation as measured by pulse oximetry (Spo2), and apnea/hypopnea index were 65%, 93%, and 57.3/h, respectively. At 2,590 m, on placebo, the corresponding values were 59%, 86%, and 86.4/h, respectively (P < .05, all corresponding comparisons). Acetazolamide increased CTO and Spo2 at 2,590 m by mean values of 2% (95% CI, 0%-4%) and 2% (95% CI, 1%-3%), respectively, and reduced the apnea/hypopnea index by 23.4/h (95% CI, 14.0-32.8/h) (P < .05, all changes). Cerebral total hemoglobin concentration, a NIRS-derived surrogate reflecting regional cerebral blood volume, increased by a similar degree in response to apneas at 490 m and 2,590 m and during acetazolamide and placebo treatment.
CONCLUSIONS: In patients with OSA staying at altitude, nocturnal cerebral and arterial oxygenation were reduced in association with exacerbated sleep apnea. Acetazolamide partially improved CTO, Spo2, and sleep apnea without impairing the cerebral blood flow response to apneas.
TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00714740; URL: www.clinicaltrials.gov.

Abstract

BACKGROUND: Sleep-disordered breathing may impair cerebral oxygenation in patients with OSA syndrome, in particular during altitude travel. We studied cerebral tissue oxygenation (CTO) at low and moderate altitude in patients with OSA and evaluated whether acetazolamide improved CTO.
METHODS: Eighteen patients with OSA living at < 600 m discontinued CPAP therapy during studies in Zurich (490 m) and during two sojourns of 3 days in the Swiss Alps (2 days at 1,860 m and 1 day at 2,590 m) separated by a 2-week washout period at < 600 m. Patients received acetazolamide (2 × 250 mg/d) or placebo at altitude in a randomized, double-blind, crossover design. Nocturnal polysomnography, including CTO monitoring by near-infrared spectroscopy (NIRS), was performed.
RESULTS: At 490 m, medians of CTO, peripheral oxygen saturation as measured by pulse oximetry (Spo2), and apnea/hypopnea index were 65%, 93%, and 57.3/h, respectively. At 2,590 m, on placebo, the corresponding values were 59%, 86%, and 86.4/h, respectively (P < .05, all corresponding comparisons). Acetazolamide increased CTO and Spo2 at 2,590 m by mean values of 2% (95% CI, 0%-4%) and 2% (95% CI, 1%-3%), respectively, and reduced the apnea/hypopnea index by 23.4/h (95% CI, 14.0-32.8/h) (P < .05, all changes). Cerebral total hemoglobin concentration, a NIRS-derived surrogate reflecting regional cerebral blood volume, increased by a similar degree in response to apneas at 490 m and 2,590 m and during acetazolamide and placebo treatment.
CONCLUSIONS: In patients with OSA staying at altitude, nocturnal cerebral and arterial oxygenation were reduced in association with exacerbated sleep apnea. Acetazolamide partially improved CTO, Spo2, and sleep apnea without impairing the cerebral blood flow response to apneas.
TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00714740; URL: www.clinicaltrials.gov.

Statistics

Citations

14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Pneumology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2014
Deposited On:09 Jan 2015 15:57
Last Modified:08 Dec 2017 08:46
Publisher:American College of Chest Physicians
ISSN:0012-3692
Publisher DOI:https://doi.org/10.1378/chest.13-2967
PubMed ID:24811331

Download

Full text not available from this repository.
View at publisher