Header

UZH-Logo

Maintenance Infos

Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX)


Abstract

We present the Airborne Prism Experiment (APEX), its calibration and subsequent radiometric measurements as well as Earth science applications derived from this data. APEX is a dispersive pushbroom imaging spectrometer covering the solar reflected wavelength range between 372 and 2540 nm with nominal 312 (max. 532) spectral bands. APEX is calibrated using a combination of laboratory, in-flight and vicarious calibration approaches. These are complemented by using a forward and inverse radiative transfer modeling approach, suitable to further validate APEX data. We establish traceability of APEX radiances to a primary calibration standard, including uncertainty analysis. We also discuss the instrument simulation process ranging from initial specifications to performance validation. In a second part, we present Earth science applications using APEX. They include geometric and atmospheric compensated as well as reflectance anisotropy minimized Level 2 data. Further, we discuss retrieval of aerosol optical depth as well as vertical column density of NOx, a radiance data-based coupled canopy–atmosphere model, and finally measuring sun-induced chlorophyll fluorescence (Fs) and infer plant pigment content. The results report on all APEX specifications including validation. APEX radiances are traceable to a primary standard with b 4% uncertainty and with an average SNR of N 625 for all spectral bands. Radiance based vicarious calibration is traceable to a secondary standard with à6.5% uncertainty. Except for inferring plant pigment content, all applications are validated using in-situ measurement approaches and modeling. Even relatively broad APEX bands (FWHM of 6 nm at 760 nm) can assess Fs with modeling agreements as high as R2 = 0.87 (relative RMSE = 27.76%). We conclude on the use of high resolution imaging spectrometers and suggest further development of imaging spectrometers supporting science grade spectroscopy measurements.

Abstract

We present the Airborne Prism Experiment (APEX), its calibration and subsequent radiometric measurements as well as Earth science applications derived from this data. APEX is a dispersive pushbroom imaging spectrometer covering the solar reflected wavelength range between 372 and 2540 nm with nominal 312 (max. 532) spectral bands. APEX is calibrated using a combination of laboratory, in-flight and vicarious calibration approaches. These are complemented by using a forward and inverse radiative transfer modeling approach, suitable to further validate APEX data. We establish traceability of APEX radiances to a primary calibration standard, including uncertainty analysis. We also discuss the instrument simulation process ranging from initial specifications to performance validation. In a second part, we present Earth science applications using APEX. They include geometric and atmospheric compensated as well as reflectance anisotropy minimized Level 2 data. Further, we discuss retrieval of aerosol optical depth as well as vertical column density of NOx, a radiance data-based coupled canopy–atmosphere model, and finally measuring sun-induced chlorophyll fluorescence (Fs) and infer plant pigment content. The results report on all APEX specifications including validation. APEX radiances are traceable to a primary standard with b 4% uncertainty and with an average SNR of N 625 for all spectral bands. Radiance based vicarious calibration is traceable to a secondary standard with à6.5% uncertainty. Except for inferring plant pigment content, all applications are validated using in-situ measurement approaches and modeling. Even relatively broad APEX bands (FWHM of 6 nm at 760 nm) can assess Fs with modeling agreements as high as R2 = 0.87 (relative RMSE = 27.76%). We conclude on the use of high resolution imaging spectrometers and suggest further development of imaging spectrometers supporting science grade spectroscopy measurements.

Statistics

Citations

37 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 10 Dec 2014
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:10 Dec 2014 16:02
Last Modified:08 Dec 2017 08:47
Publisher:Elsevier
ISSN:0034-4257
Publisher DOI:https://doi.org/10.1016/j.rse.2014.11.014
Related URLs:http://www.sciencedirect.com/science/article/pii/S0034425714004568

Download