Header

UZH-Logo

Maintenance Infos

Population pharmacokinetic modelling and evaluation of different dosage regimens for darunavir and ritonavir in HIV-infected individuals


Arab-Alameddine, M; Lubomirov, R; Fayet-Mello, A; Aouri, M; Rotger, M; Buclin, T; Widmer, N; Gatri, M; Ledergerber, B; Rentsch, K; Cavassini, M; Panchaud, A; Guidi, M; Telenti, A; Décosterd, L A; Csajka, C (2014). Population pharmacokinetic modelling and evaluation of different dosage regimens for darunavir and ritonavir in HIV-infected individuals. Journal of Antimicrobial Chemotherapy, 69(9):2489-2498.

Abstract

OBJECTIVES Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. METHODS The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM(®)). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. RESULTS A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. CONCLUSIONS The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be proposed.

Abstract

OBJECTIVES Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. METHODS The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM(®)). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. RESULTS A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. CONCLUSIONS The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be proposed.

Statistics

Citations

Dimensions.ai Metrics
9 citations in Web of Science®
8 citations in Scopus®
12 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

220 downloads since deposited on 11 Dec 2014
119 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
540 Chemistry
Date:September 2014
Deposited On:11 Dec 2014 09:57
Last Modified:15 Feb 2018 04:37
Publisher:Oxford University Press
ISSN:0305-7453
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/jac/dku131
PubMed ID:24821595

Download