Header

UZH-Logo

Maintenance Infos

Stretchable electronics based on Ag-PDMS composites


Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos (2014). Stretchable electronics based on Ag-PDMS composites. Scientific Reports, 4(7254):online.

Abstract

Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator.

Abstract

Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator.

Statistics

Citations

43 citations in Web of Science®
42 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

56 downloads since deposited on 15 Dec 2014
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2014
Deposited On:15 Dec 2014 15:27
Last Modified:08 Dec 2017 09:09
Publisher:Nature Publishing Group
ISSN:2045-2322
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep07254
PubMed ID:25434843

Download

Download PDF  'Stretchable electronics based on Ag-PDMS composites'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher