Header

UZH-Logo

Maintenance Infos

Isolated insular strokes and plasma MR-proANP levels are associated with newly diagnosed atrial fibrillation: A pilot study


Frontzek, Karl; Fluri, Felix; Siemerkus, Jakob; Müller, Beat; Gass, Achim; Christ-Crain, Mirjam; Katan, Mira (2014). Isolated insular strokes and plasma MR-proANP levels are associated with newly diagnosed atrial fibrillation: A pilot study. PLoS ONE, 9(3):e92421.

Abstract

INTRODUCTION: In this study, we assessed the relationship of insular strokes and plasma MR-proANP levels with newly diagnosed atrial fibrillation (NDAF).
METHODS: This study is based on a prospective acute stroke cohort (http://www.clinicaltrials.gov, NCT00390962). Patient eligibility was dependent on the diagnosis of acute ischemic stroke, absence of previous stroke based on past medical history and MRI, no history of AF and congestive heart failure (cohort A) and, additionally, no stroke lesion size ≥ 20 mL (sub-cohort A*). AF, the primary endpoint, was detected on 24-hour electrocardiography and/or echocardiography. Involvement of the insula was assessed by two experienced readers on MRI blinded to clinical data. MR-proANP levels were obtained through a novel sandwich immunoassay. Logistic-regression-models were fitted to estimate odds ratios for the association of insular strokes and MR-proANP with NDAF. The discriminatory accuracy of insular strokes and MR-proANP was assessed by a model-wise comparison of the area under the receiver-operating-characteristics-curve (AUC) with known predictors of AF.
RESULTS: 104 (cohort A) and 83 (cohort A*) patients fulfilled above-mentioned criteria. Patients with isolated insular strokes had a 10.7-fold higher odds of NDAF than patients with a small ischemic stroke at any other location. The AUC of multivariate logistic regression models for the prediction of NDAF improved significantly when adding stroke location and MR-proANP levels. Moreover, MR-proANP levels remained significantly elevated throughout the acute hospitalization period in patients with NDAF compared to those without.
CONCLUSIONS: Isolated insular strokes and plasma MR-proANP levels on admission are independent predictors of NDAF and significantly improve the prediction accuracy of identifying patients with NDAF compared to known predictors including age, the NIHSS and lesion size. To accelerate accurate diagnosis and enhance secondary prevention in acute stroke, higher levels of MR-proANP and insular strokes may represent easily accessible indicators of AF if confirmed in an independent validation cohort.

Abstract

INTRODUCTION: In this study, we assessed the relationship of insular strokes and plasma MR-proANP levels with newly diagnosed atrial fibrillation (NDAF).
METHODS: This study is based on a prospective acute stroke cohort (http://www.clinicaltrials.gov, NCT00390962). Patient eligibility was dependent on the diagnosis of acute ischemic stroke, absence of previous stroke based on past medical history and MRI, no history of AF and congestive heart failure (cohort A) and, additionally, no stroke lesion size ≥ 20 mL (sub-cohort A*). AF, the primary endpoint, was detected on 24-hour electrocardiography and/or echocardiography. Involvement of the insula was assessed by two experienced readers on MRI blinded to clinical data. MR-proANP levels were obtained through a novel sandwich immunoassay. Logistic-regression-models were fitted to estimate odds ratios for the association of insular strokes and MR-proANP with NDAF. The discriminatory accuracy of insular strokes and MR-proANP was assessed by a model-wise comparison of the area under the receiver-operating-characteristics-curve (AUC) with known predictors of AF.
RESULTS: 104 (cohort A) and 83 (cohort A*) patients fulfilled above-mentioned criteria. Patients with isolated insular strokes had a 10.7-fold higher odds of NDAF than patients with a small ischemic stroke at any other location. The AUC of multivariate logistic regression models for the prediction of NDAF improved significantly when adding stroke location and MR-proANP levels. Moreover, MR-proANP levels remained significantly elevated throughout the acute hospitalization period in patients with NDAF compared to those without.
CONCLUSIONS: Isolated insular strokes and plasma MR-proANP levels on admission are independent predictors of NDAF and significantly improve the prediction accuracy of identifying patients with NDAF compared to known predictors including age, the NIHSS and lesion size. To accelerate accurate diagnosis and enhance secondary prevention in acute stroke, higher levels of MR-proANP and insular strokes may represent easily accessible indicators of AF if confirmed in an independent validation cohort.

Statistics

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

10 downloads since deposited on 29 Dec 2014
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:29 Dec 2014 15:44
Last Modified:22 Aug 2017 05:37
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0092421
PubMed ID:24647802

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 330kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations