Header

UZH-Logo

Maintenance Infos

Hif-2α promotes degradation of Mammalian peroxisomes by selective autophagy


Abstract

Peroxisomes play a central role in lipid metabolism, and their function depends on molecular oxygen. Low oxygen tension or von Hippel-Lindau (Vhl) tumor suppressor loss is known to stabilize hypoxia-inducible factors alpha (Hif-1α and Hif-2α) to mediate adaptive responses, but it remains unknown if peroxisome homeostasis and metabolism are interconnected with Hif-α signaling. By studying liver-specific Vhl, Vhl/Hif1α, and Vhl/Hif2α knockout mice, we demonstrate a regulatory function of Hif-2α signaling on peroxisomes. Hif-2α activation augments peroxisome turnover by selective autophagy (pexophagy) and thereby changes lipid composition reminiscent of peroxisomal disorders. The autophagy receptor Nbr1 localizes to peroxisomes and is likewise degraded by Hif-2α-mediated pexophagy. Furthermore, we demonstrate that peroxisome abundance is reduced in VHL-deficient human clear cell renal cell carcinomas with high HIF-2α levels. These results establish Hif-2α as a negative regulator of peroxisome abundance and metabolism and suggest a mechanism by which cells attune peroxisomal function with oxygen availability.

Abstract

Peroxisomes play a central role in lipid metabolism, and their function depends on molecular oxygen. Low oxygen tension or von Hippel-Lindau (Vhl) tumor suppressor loss is known to stabilize hypoxia-inducible factors alpha (Hif-1α and Hif-2α) to mediate adaptive responses, but it remains unknown if peroxisome homeostasis and metabolism are interconnected with Hif-α signaling. By studying liver-specific Vhl, Vhl/Hif1α, and Vhl/Hif2α knockout mice, we demonstrate a regulatory function of Hif-2α signaling on peroxisomes. Hif-2α activation augments peroxisome turnover by selective autophagy (pexophagy) and thereby changes lipid composition reminiscent of peroxisomal disorders. The autophagy receptor Nbr1 localizes to peroxisomes and is likewise degraded by Hif-2α-mediated pexophagy. Furthermore, we demonstrate that peroxisome abundance is reduced in VHL-deficient human clear cell renal cell carcinomas with high HIF-2α levels. These results establish Hif-2α as a negative regulator of peroxisome abundance and metabolism and suggest a mechanism by which cells attune peroxisomal function with oxygen availability.

Statistics

Citations

Dimensions.ai Metrics
29 citations in Web of Science®
30 citations in Scopus®
28 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 03 Jan 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Endocrinology and Diabetology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:4 November 2014
Deposited On:03 Jan 2015 20:26
Last Modified:14 Feb 2018 22:23
Publisher:Cell Press (Elsevier)
ISSN:1550-4131
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.cmet.2014.09.017
PubMed ID:25440060

Download