Header

UZH-Logo

Maintenance Infos

Working memory updating latency reflects the cost of switching between maintenance and updating modes of operation


Kessler, Yoav; Oberauer, Klaus (2014). Working memory updating latency reflects the cost of switching between maintenance and updating modes of operation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3):738-754.

Abstract

Updating and maintenance of information are 2 conflicting demands on working memory (WM). We examined the time required to update WM (updating latency) as a function of the sequence of updated and not-updated items within a list. Participants held a list of items in WM and updated a variable subset of them in each trial. Four experiments that vary the number of to-be-updated and to-be-maintained items, as well as their positions in the list, are reported. The pattern of latencies was best explained by a model assuming forward scanning of the list, updating modified items, and maintaining nonmodified items. Switching between updating and maintenance incurred a response time cost, which increased with overall set-size. The formation of new item-position associations accounted for an additional response time component. The finding of an update-switch cost provides novel behavioral support for a class of physiologically inspired computational models, in which updating and maintenance require 2 different states of WM.

Abstract

Updating and maintenance of information are 2 conflicting demands on working memory (WM). We examined the time required to update WM (updating latency) as a function of the sequence of updated and not-updated items within a list. Participants held a list of items in WM and updated a variable subset of them in each trial. Four experiments that vary the number of to-be-updated and to-be-maintained items, as well as their positions in the list, are reported. The pattern of latencies was best explained by a model assuming forward scanning of the list, updating modified items, and maintaining nonmodified items. Switching between updating and maintenance incurred a response time cost, which increased with overall set-size. The formation of new item-position associations accounted for an additional response time component. The finding of an update-switch cost provides novel behavioral support for a class of physiologically inspired computational models, in which updating and maintenance require 2 different states of WM.

Statistics

Citations

17 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2014
Deposited On:05 Jan 2015 13:45
Last Modified:05 Apr 2016 18:44
Publisher:American Psychological Association
ISSN:0278-7393
Publisher DOI:https://doi.org/10.1037/a0035545
PubMed ID:24446752

Download

Full text not available from this repository.
View at publisher