Header

UZH-Logo

Maintenance Infos

Cytotoxic efficacy of photodynamic therapy in osteosarcoma cells in vitro


Meier, Daniela; Campanile, Carmen; Botter, Sander M; Born, Walter; Fuchs, Bruno (2014). Cytotoxic efficacy of photodynamic therapy in osteosarcoma cells in vitro. Journal of Visualized Experiments, 2014(85):online.

Abstract

In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response(1). Despite its approval almost twenty years ago by the FDA, PDT is nowadays only used to treat a limited number of cancer types (skin, bladder) and nononcological diseases (psoriasis, actinic keratosis)(2). The major advantage of the use of PDT is the ability to perform a local treatment, which prevents systemic side effects. Moreover, it allows the treatment of tumors at delicate sites (e.g. around nerves or blood vessels). Here, an intraoperative application of PDT is considered in osteosarcoma (OS), a tumor of the bone, to target primary tumor satellites left behind in tumor surrounding tissue after surgical tumor resection. The treatment aims at decreasing the number of recurrences and at reducing the risk for (postoperative) metastasis. In the present study, we present in vitro PDT procedures to establish the optimal PDT settings for effective treatment of widely used OS cell lines that are used to reproduce the human disease in well established intratibial OS mouse models. The uptake of the PS mTHPC was examined with a spectrophotometer and phototoxicity was provoked with laser light excitation of mTHPC at 652 nm to induce cell death assessed with a WST-1 assay and by the counting of surviving cells. The established techniques enable us to define the optimal PDT settings for future studies in animal models. They are an easy and quick tool for the evaluation of the efficacy of PDT in vitro before an application in vivo.

Abstract

In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response(1). Despite its approval almost twenty years ago by the FDA, PDT is nowadays only used to treat a limited number of cancer types (skin, bladder) and nononcological diseases (psoriasis, actinic keratosis)(2). The major advantage of the use of PDT is the ability to perform a local treatment, which prevents systemic side effects. Moreover, it allows the treatment of tumors at delicate sites (e.g. around nerves or blood vessels). Here, an intraoperative application of PDT is considered in osteosarcoma (OS), a tumor of the bone, to target primary tumor satellites left behind in tumor surrounding tissue after surgical tumor resection. The treatment aims at decreasing the number of recurrences and at reducing the risk for (postoperative) metastasis. In the present study, we present in vitro PDT procedures to establish the optimal PDT settings for effective treatment of widely used OS cell lines that are used to reproduce the human disease in well established intratibial OS mouse models. The uptake of the PS mTHPC was examined with a spectrophotometer and phototoxicity was provoked with laser light excitation of mTHPC at 652 nm to induce cell death assessed with a WST-1 assay and by the counting of surviving cells. The established techniques enable us to define the optimal PDT settings for future studies in animal models. They are an easy and quick tool for the evaluation of the efficacy of PDT in vitro before an application in vivo.

Statistics

Altmetrics

Downloads

7 downloads since deposited on 16 Jan 2015
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Date:2014
Deposited On:16 Jan 2015 14:10
Last Modified:20 Aug 2017 19:40
Publisher:Journal of Visualized Experiments
ISSN:1940-087X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3791/51213
PubMed ID:24686859

Download

Download PDF  'Cytotoxic efficacy of photodynamic therapy in osteosarcoma cells in vitro'.
Preview
Content: Published Version
Filetype: PDF
Size: 272kB
View at publisher