Header

UZH-Logo

Maintenance Infos

Fgd5 identifies hematopoietic stem cells in the murine bone marrow


Gazit, R; Mandal, P K; Ebina, W; Ben-Zvi, A; Nombela-Arrieta, C; Silberstein, L E; Rossi, D J (2014). Fgd5 identifies hematopoietic stem cells in the murine bone marrow. Journal of Experimental Medicine, 211(7):1315-1331.

Abstract

Hematopoietic stem cells (HSCs) are the best-characterized tissue-specific stem cells, yet experimental study of HSCs remains challenging, as they are exceedingly rare and methods to purify them are cumbersome. Moreover, genetic tools for specifically investigating HSC biology are lacking. To address this we sought to identify genes uniquely expressed in HSCs within the hematopoietic system and to develop a reporter strain that specifically labels them. Using microarray profiling we identified several genes with HSC-restricted expression. Generation of mice with targeted reporter knock-in/knock-out alleles of one such gene, Fgd5, revealed that though Fgd5 was required for embryonic development, it was not required for definitive hematopoiesis or HSC function. Fgd5 reporter expression near exclusively labeled cells that expressed markers consistent with HSCs. Bone marrow cells isolated based solely on Fgd5 reporter signal showed potent HSC activity that was comparable to stringently purified HSCs. The labeled fraction of the Fgd5 reporter mice contained all HSC activity, and HSC-specific labeling was retained after transplantation. Derivation of next generation mice bearing an Fgd5-CreERT2 allele allowed tamoxifen-inducible deletion of a conditional allele specifically in HSCs. In summary, reporter expression from the Fgd5 locus permits identification and purification of HSCs based on single-color fluorescence.

Abstract

Hematopoietic stem cells (HSCs) are the best-characterized tissue-specific stem cells, yet experimental study of HSCs remains challenging, as they are exceedingly rare and methods to purify them are cumbersome. Moreover, genetic tools for specifically investigating HSC biology are lacking. To address this we sought to identify genes uniquely expressed in HSCs within the hematopoietic system and to develop a reporter strain that specifically labels them. Using microarray profiling we identified several genes with HSC-restricted expression. Generation of mice with targeted reporter knock-in/knock-out alleles of one such gene, Fgd5, revealed that though Fgd5 was required for embryonic development, it was not required for definitive hematopoiesis or HSC function. Fgd5 reporter expression near exclusively labeled cells that expressed markers consistent with HSCs. Bone marrow cells isolated based solely on Fgd5 reporter signal showed potent HSC activity that was comparable to stringently purified HSCs. The labeled fraction of the Fgd5 reporter mice contained all HSC activity, and HSC-specific labeling was retained after transplantation. Derivation of next generation mice bearing an Fgd5-CreERT2 allele allowed tamoxifen-inducible deletion of a conditional allele specifically in HSCs. In summary, reporter expression from the Fgd5 locus permits identification and purification of HSCs based on single-color fluorescence.

Statistics

Citations

29 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

13 downloads since deposited on 09 Feb 2015
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Hematology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:30 June 2014
Deposited On:09 Feb 2015 14:20
Last Modified:05 Apr 2016 18:48
Publisher:Rockefeller University Press
ISSN:0022-1007
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1084/jem.20130428
PubMed ID:24958848

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher