Header

UZH-Logo

Maintenance Infos

Associations between age, motor function, and resting state sensorimotor network connectivity in healthy older adults - Zurich Open Repository and Archive


Seidler, Rachael; Erdeniz, Burak; Koppelmans, Vincent; Hirsiger, Sarah; Mérillat, Susan; Jäncke, Lutz (2015). Associations between age, motor function, and resting state sensorimotor network connectivity in healthy older adults. NeuroImage, 108:47-59.

Abstract

Aging is associated with impaired motor performance across a range of tasks. Both primary neural representations of movement and potential compensatory cognitive mechanisms appear to be disrupted in older age. Here we determined how age is associated with resting state sensorimotor functional connectivity, and whether connectivity strength is associated with motor performance. We investigated the association between age and resting state functional connectivity of several sensorimotor networks in 191 healthy older, right-handed individuals. Regions of interest were defined in the left motor cortex, left putamen, and right cerebellar lobules V and VIII. Analyses were adjusted for head motion, gray matter volume, diastolic blood pressure, and smoker status; we then evaluated whether connectivity is associated with participants' manual motor performance. We found both increased and decreased connectivity within portions of the motor cortical and cerebellar networks after adjusting for covariates. We observed that connectivity increased with age for the motor cortex and cerebellar lobule VIII with the putamen, providing evidence of greater interactivity across networks with age. Higher tapping frequency and greater grip force were associated with stronger connectivity between the motor cortex during resting state, putamen, cerebellar lobule VIII and the insular cortex, suggesting that greater network interactivity may protect against age declines in performance.

Abstract

Aging is associated with impaired motor performance across a range of tasks. Both primary neural representations of movement and potential compensatory cognitive mechanisms appear to be disrupted in older age. Here we determined how age is associated with resting state sensorimotor functional connectivity, and whether connectivity strength is associated with motor performance. We investigated the association between age and resting state functional connectivity of several sensorimotor networks in 191 healthy older, right-handed individuals. Regions of interest were defined in the left motor cortex, left putamen, and right cerebellar lobules V and VIII. Analyses were adjusted for head motion, gray matter volume, diastolic blood pressure, and smoker status; we then evaluated whether connectivity is associated with participants' manual motor performance. We found both increased and decreased connectivity within portions of the motor cortical and cerebellar networks after adjusting for covariates. We observed that connectivity increased with age for the motor cortex and cerebellar lobule VIII with the putamen, providing evidence of greater interactivity across networks with age. Higher tapping frequency and greater grip force were associated with stronger connectivity between the motor cortex during resting state, putamen, cerebellar lobule VIII and the insular cortex, suggesting that greater network interactivity may protect against age declines in performance.

Citations

14 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
08 University Research Priority Programs > Dynamics of Healthy Aging
Dewey Decimal Classification:150 Psychology
Language:English
Date:2015
Deposited On:12 Jan 2015 12:15
Last Modified:05 Apr 2016 18:49
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2014.12.023
PubMed ID:25514517

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations